
MessageCat
A simplistic Internet Messaging system created by Nathan Baines.

Analysis 6
Problem identification 6
Why is this problem amenable to a computational approach? 6

Preconditions 7
Stakeholders 7

Data Protection Act 8
Research – Whatsapp 9
Research – Telegram 12
Research – Discord 13
Research - Snapchat 14
Features 15
Limitations 16
Requirements 17
Success criteria 18

Design 19
Decomposition 19

Server 19
Database 19

MySQLHandler 21
MessageStore 22
MessageQueue 23
KeyStore 23
Database 24

Server functions 24
Server 25
Handler 26
Server process flow diagram 27

Build targets 29
Client application 30

General process 30
Networker service and Connection handler 31
Usability 34
UI 34

LoadingActivity 34
CreateNewUserActivity 36
MainActivity 38
InviteToChatActivity 43

Notifications 45
Local storage 46
Main process to connection handler process communication 47

Algorithms 48
Queue Data Structure 48
RSA Encryption Algorithm 48

2

SHA-256 Hashing Algorithm 50
Overall code structure 50

com.nathcat.RSA 50
EncryptedObject 50
KeyPair 51
PrivateKey 51
PublicKey 52
RSA 52

com.nathcat.messagecat_database 52
Result (enum) 52
MySQLHandler 52
MessageQueue 53
MessageStore 54
KeyStore 54
ExpirationManager extends Thread 55
Database 55

com.nathcat.messagecat_database_entities 55
User 55
Chat 56
ChatInvite 56
FriendRequest 56
Friendship 57
Message 57

com.nathcat.messagecat_server 57
Queue 57
Queue.Node 57
QueueManager extends Thread 58
RequestType (enum) 58
ListenRule 59
Handler 59
ConnectionHandler extends Handler 60
Server 62

com.nathcat.messagecat_client 63
AutoStartService extends BroadcastReceiver 63
LoadingActivity 63
NewUserActivity 63
NetworkerService extends Service 64
ConnectionHandler extends Handler 65
ListenRuleCallbackHandler extends Thread 66
MainActivity 67
Other… 68

Testing 69
RSA 69
Database 69

3

AddUser() 69
AddFriendship() 70
AddFriendRequest() 70
AddChat() 70
AddChatInvite() 71
GetUser() 71
GetFriendship() 72
GetFriendRequests() 72
GetChat() 73
GetChatInvite() 73

Server 74
Client application 76

End-user testing 78
Privacy policy 79

Development timeline 80
Implementation 81

Database entities 81
User 81
Friendship 82
FriendRequest 82
ChatInvite 83
Chat 84
Message 84

RSA Asymmetric Encryption system 85
PublicKey 85
PrivateKey 86
EncryptedObject 86
KeyPair 88
RSA 91
Testing 92
ByteChunk 93
EncryptedObject 94
KeyPair 97
Secondary testing 99

Database 99
MySQLHandler 99
KeyStore 110
Queue 113
MessageQueue 115
MessageStore 117
Database 119
ExpirationManager 125
Testing 126

AddUser() 126

4

AddFriendship() 127
AddFriendRequest() 128
AddChat() 128
AddChatInvite() 129
GetUser() 129
GetFriendship() 131
GetFriendRequests() 131
GetChat() 132
GetChatInvite() 132
Connection timeout issue 133

Server 135
ListenRule 135
Handler 137
ConnectionHandler 140
QueueManager 152
Server 154
Server main method 157
Testing 157

Client application 166
ConnectionHandler (client) 167
NetworkerService 170
AutoStartService 178
LoadingActivity 178
NewUserActivity 181
MainActivity 188
ChatsFragment 201
FriendsFragment 203
FindUserFragment 206
InvitationsFragment 208
InviteToChatActivity 212
MessagingFragment 218
Testing 225

LoadingActivity 225
NewUserActivity 227
MainActivity 228
FindPeopleFragment 229
InvitationsFragment 229
InviteToChatActivity 229
FriendsFragment 230
ChatsFragment 230
MessagingFragment 230
Notifications 231

Evaluation 232
Android 13 232

5

End-user testing 234
Final evaluation 236

Evaluation of success criteria 236
Code review 238
Usability 238
Limitations 239
Future development plan 240
Summary 240

Analysis

Problem identification
In this project I will develop an internet messaging system. Such a system should allow users to send
text based messages between each other in real time over the internet, providing fast and efficient
communication across long or short distances. The modern world requires such fast communication
because things can change very quickly, for example, leaders of countries must stay up to date with
things happening around the world, market traders must communicate very quickly to ensure they get
the best profit from their investments, and emergency services need to be able to communicate with
people in danger to ensure that they get help as quickly as possible.

An application such as this should be efficient and portable, as such the clear candidate is a mobile
application. I will likely use Android for this since I have more experience with it, and Android
occupies the majority of the market share of devices when compared to IOS. A server device will also
be required, to act as the centre point of communication between devices. While storing all data on a
single server device is a security risk, it does offer some benefits, primarily it allows for a much
simpler networking structure to be implemented during development, although the server will likely
have to make use of concurrent processing methods to ensure it offers the most efficient experience
for many devices at once.

It must be noted that there are a number of similar applications which already solve this problem,
however the aim of this project is to create an application much simpler than those, which is purely
focussed on messaging. A lot of internet messaging applications have developed other features
alongside their messaging system, the goal of this application is purely to focus on the messaging
aspect in order to provide the simplest experience possible.

Why is this problem amenable to a computational approach?
For most of modern history humans used physical methods of transportation to communicate with
each other, generally through the mail, communicating using the written word, this is an analogue
approach. The main issue with this, and many other analogue approaches, is that it is slow, it may take
multiple weeks or months for a letter to reach is destination, depending on the distance between the
source and destination, and where that destination is, for example a war torn country might be less
able to receive such communication, since its links with other countries will likely be damaged by

6

said war. Innovations in transportation have significantly improved this system’s efficiency, but it is
still rather inefficient when compared with digital methods, which brings us to my point.

With the invention of the internet and digital computers / media, we have a means for much more
efficient communication, by transforming human language into binary data via the use of character
sets and peripheral devices, we can communicate information across networks to anywhere in the
world which has access to such information, and with the invention of satellite technology, the list of
places that can access this information is very large.

There are a lot of programs which already take advantage of the internet to allow human
communication, some of which I will look at in more detail later on in this document. My goal is to
create a simple Android application which replicates this functionality, in a simplified manner. The
app will simply allow mass communication, and nothing else, since this is all that is required from
such an application.

Preconditions
Due to the nature of this application there are certain features or processes which must be present. For
example, there must be a centralised server device which acts as a common connection point for all
client devices. Since my plan is to develop an Android application, this adds a number of other
preconditions:

● Networking operations must be performed in a separate process from the UI thread.
● The application must be lightweight enough to function effectively in a mobile environment.
● Some data should be stored on the device itself.

○ Authentication data for example, storing this locally will mean that the user only has
to login to the application once, and they will then be remembered.

And of course the previously mentioned precondition:

● A centralised server device which acts as a central connection point, and includes a database
of some description.

Furthermore, as much as possible, certain aspects of the application should be reusable, for
maintenance as well as convenience in future development of the system. Different parts of the system
should be separated into different Java packages, to differentiate source code used for different
purposes, rather than having it all bundled up together. This would also reduce compilation time and
the size of the final compiled application, since there would be less source code to compile.

Stakeholders
Stakeholders are an important part of any project, as they are generally the ones using the application,
their input is vital to the success of the development process in producing an application which
functions appropriately.

In this project, I have two stakeholders, one who is a programmer such as myself, and the other is a
general user, they do not have any experience with the actual inner workings of an application, as
opposed to my first stakeholder.

7

Following are two interviews I conducted with my two stakeholders.

General user:
Q: What other messaging applications have you used?
A: Discord, WhatsApp, and Snapchat are the ones I have used the most.

Q: What makes you want a new application, rather than using one of the already existing ones?
A: These applications have a lot of extra features which I find unnecessary and in some cases
confusing, so I would like an application which simplifies the process of communication, extra
features are not needed, simply the messaging.

Q: An application like this would have to hold a large amount of data about its users, how do you feel
about that?
A: Having my data held by an organisation does make me anxious, in order to be able to put my trust
in an application I would want to know how my data is being stored and where it is being transferred.

Q: Do you have any particular thoughts about what you might want the application to look like?
A: Preferably the application would look similar to other messaging applications like WhatsApp, to
make the transition between them easier.

Programmer:
Q: What measures would an organisation have to take to convince you that your data is safe?
A: The most important measure is encryption, not symmetric encryption because that’s too simple to
break. They would have to implement some kind of asymmetric encryption for communication
between devices. Data that is stored on a server would also have to be encrypted to some extent,
hashing on the passwords for example.

Q: What level of maintainability would you expect in the source code of an application such as this?
A: The code should be as maintainable as possible, comments to explain things, and a modular,
layered design, similar to that of network protocols.

Following this interview we can see that the Stakeholder is looking for a simple, secure application. It
needs only to allow the user to message others, no other functions are necessary to them. This is very
useful information as it places a clear restriction on the features that should be available in the
application, which will simplify development of the application, and make the final application
simpler to use (as is the point of this application).

However, this application will inevitably store an amount of information about its users, so we should
discuss the implications this has under the Data Protection Act.

Data Protection Act
Any organisation which collects data about people has a responsibility to ensure that this data is stored
securely and in a way which respects the user’s privacy, in accordance with the data protection act.
Given the problem this project concerns itself with, it is inevitable that we will end up storing some
amount of data about users of the application, as such I should attempt to store this data in a way that

8

reflects the principles laid out in the data protection act, especially if I plan to deploy this application
to the public.

The DPA states that data should not be stored for longer than is necessary, so we should provide a way
for users to delete their data from the server, this means that they will not be able to use the
application without creating new data, so they should be made aware of this.

The DPA also states that the data stored about users should not be excessive, hence we should
determine the data that is absolutely required for the application to function safely and securely, and
this is the data that will be stored by the application.

Data will not be transferred to third parties, so the point stating that data should not be transferred to
organisations in countries that do not offer a similar level of protection is not necessarily relevant at
this time. However the point stating that data should be stored securely is absolutely relevant. We
should design the database system in such a way that only the application and authorised individuals
should have direct access to the data it contains, this will be covered in the design section of this
project. Furthermore, passwords will be hashed before being sent to the server for checking,
communications between client devices and the server will be encrypted by a connection specific key
pair generated when the connection is started, and messages (which may contain sensitive
information), will be separately encrypted using a key pair specific to the chat the message was sent
to, these processes will also be covered in more detail in the design phase of the application.

Research – Whatsapp
Whatsapp is one of the most popular Internet messaging applications in the world, it is owned by
Meta platforms (previously Facebook). It was developed to solve the annoyance of having to pay for
each individual message, which is the case for SMS messaging through mobile network providers.

Whatsapp’s user interface is well designed and easy to use, furthermore all chats on the application
are end-to-end encrypted, which is something I aim to implement in my application. But returning to
the interface, the message entry box and send button are clear, and it is clear who messages are from,
here is an image of the user interface:

9

Ignoring the… questionable messages… You can see that the message entry box is clear, with a
placeholder informing the user what it is for, buttons at the top and labels with information about the
other person in the chat, and the send button is clearly marked, next to the message entry box.

The main features of Whatsapp are:
● A Centralised IM system
● End-to-end encryption
● Voice-over-Internet-Protocol (VoIP)

VoIP is a protocol which allows users to communicate over the internet with their voices, this takes
the form of voice calling and video calling (although the transfer of video is an entirely different
protocol). The protocol by which Whatsapp transmits messages between users is also very interesting,
a flow chart describing this process follows:

10

This is an interesting approach, the main benefit of this is that it reduces the resources used on the
server, as messages are stored locally on devices as opposed to being stored on the server, the server
acts as a sort of post office, if you will. Although conversely this will increase the complexity in
making this application cross-platform, while Whatsapp has found a way to do this, it seems that this
design would make this process more difficult than it needs to be.

Another existing IM application is Signal. I include Whatsapp and Signal in the same section because
they are very similar in their design and functionality. Furthermore, both applications use Open

11

Whisper Systems to implement end-to-end encryption on their platforms. This is absolutely a priority
feature in my application, however these services have been criticised for their use of such secure
encryption. While this may seem counter-intuitive, especially with the increased awareness of data
protection in the modern world, it does make sense. This will be covered in more detail later.

Research – Telegram
Telegram is another IM service. Like Whatsapp, they use Phone numbers to create user accounts, and
these are verified by SMS.

Telegram has a number of interesting features, some of which may be outside the scope of this
project, but are certainly potential future developments. For example, they have a “secret chat”
feature, which uses client-to-client communication. The platform also allows users to share their live
location for a set period of time, this is a very interesting feature which is present in another IM
application called “SnapChat”, while this poses a number of data safety and protection issues, it is still
an interesting feature and is well worth considering for development and implementation in my
application. Another feature in “SnapChat” is disappearing messages, this could be very useful as it
will significantly reduce the resources required by the server.

Telegram also uses a cloud-based architecture, which is much more suited to a cross platform service
than Whatsapp and Signal’s architectures. While it may be more resource heavy on the server side,
this may be a more suitable choice for my application, given that a priority is easy integration with as
many platforms as possible.

The platform has also provided infrastructure for developers to create “bots” on their platform, which
are able to talk to users. This is a feature that is also present on yet another IM application called
“Discord”.

A feature that is present on all of the platforms I have researched here is the ability to form “group
chats”, this could be difficult to implement, but is certainly worth considering, although I find it
unlikely that this will be part of the primary development points.

Something that all of these platforms have been criticised for is their use of end-to-end encryption,
this is because of criminal activity being organised/conducted on these platforms, this is an ongoing
issue and as far as I can see there is not a clear solution. For example, Telegram suffered massive
criticism when it was discovered that the terrorist group ISIS had a message channel on their platform.
The channel was later removed, but the point remains that such strong encryption makes it difficult to
perform moderation and ensure that the platform is not being used for darker purposes. A potential
solution to this is to create an Artificial Intelligence application that is trained to recognise potential
criminal activity, and flags messages for review by a real person. This would be very difficult and
time consuming to develop, so it is not part of the scope of this project, but I thought I should mention
it anyway as it is certainly a feature that I should consider for the future if I was to take this
application further.

12

Research – Discord
Discord is another very popular IM and VoIP application, it allows users to communicate over text,
voice, or video, and users communities called “servers”, this is an interesting format which could be
difficult to implement. It is similar to group chats in other applications like Whatsapp and Signal,
although these are the main form of communication in Discord, whereas in Whatsapp and Signal,
one-to-one communication is more a priority than group communications.

Discord has a number of APIs which are designed for developers, for example, their “bot” API is very
popular for developing programs which automatically manage and moderate servers, and their
GameBridge API allows developers to directly integrate Discord into their games, Rocket League for
example makes use of this API.

Furthermore, the way the monetized the application is very interesting. The added the option for users
to subscribe to Discord Nitro, which gives them access to custom emojis and stickers, they can also
boost servers, with enough boosts, users in a server will gain various benefits within that server,
higher audio quality, or animated icons for example.

Like the other platforms researched here, Discord has been criticised for abuse and bullying
behaviour, and illegal activity being performed or organised on their platform. The platform is very
popular with alt-right and far-right extremists, and was used to plan the Unite The Right rally in
Charlottesville, Virginia on August 12 2017. Two days after the U.S Capitol Attack in January 2021,
Discord deleted a pro-Donald Trump server that was found to have been involved in encouraging
insurrection and violence that may have led to this tragic event.

Moving on to something less tragic, Discord’s architecture appears to be loosely based around Internet
Relay Chat (IRC) protocol, although instead of physical hardware, the so called servers are simply
database entities. IRC is a very interesting protocol, it was created by a Finnish IT professional by the
name of Jarkko Oikarinen and is designed to facilitate group communication as well as one-on-one
private communication. In researching IRC, I have decided that I don’t plan to use a strict
implementation of the protocol, but I believe it could give some ideas on an architecture for group
based communication as well as one-on-one private communication. The way that Discord represents
its servers as database entities is an interesting idea, storing them centrally would allow them to be
publically joinable, or at least be found by anyone, this is an interesting idea, although given that the
application I am developing in this project has more of a focus on private communication I’m not sure
it is necessary to implement chats in this way.

Furthermore, Discord’s user interface is very well designed:

13

In both the mobile and desktop applications, the so called “servers” are located in a strip on the left,
channels within that server are located in an expandable side menu, and the chat window clearly and
compactly displays messages along with the name and profile picture of the user that sent them. A list
of users in the server is located to the right of the chat window. Some features of this design may be
ideal for use in my application.

Research - Snapchat
Snapchat is another internet messaging application, but it contains a significant number of other
features as well. The stakeholder specifically named this application as one of the ones they used the
most, so it is worth researching, as it may offer some interesting features.

Snapchat allows communication in a number of formats, it allows text messages (called chats),
pictures and videos (called snaps), voice messages, multimedia messages, and voice or video calls.
There are a lot of different formats, some of these might not be immediately necessary but generally it
seems that they are designed to fit everyone’s communication style, i.e. I have found that people often
prefer one form of communication over another, and as such people have the freedom to choose how
they communicate with each other.

Snapchat also offers a lot of other features besides this general communication, for example, rather
than profile pictures they use avatars, which users can customise to look like themselves (or however
they want), and they have access to a large wardrobe of cosmetic items to choose from. There is also a
feature called snap maps, which tracks the real world location of your friends on the app (provided
they have consented to this).

14

A lot of these features are extra complications to the primary aim of the system, which is for
communicating with friends and loved ones, however they do offer a very well crafted user
experience over simpler apps like WhatsApp. The stakeholder specifically requested an app which can
be used simply for secure messaging, however there is no reason why some of these features cannot
be designated for future development.

I think the most key feature which I could incorporate into this application would be the real time
location tracking, while this does imply more ethical and legal issues into the development of the
application, it is a very interesting feature and would offer an improved user experience.

Snapchat is also very well known for its extensive privacy features, it will notify users in a chat if a
screenshot is taken of the chat, you will be notified if someone saves something you send to a chat,
and messages will disappear 24 hours after they are viewed by the person you sent them to (unless
settings are set otherwise). These are very effective privacy features and could be fairly complex to
implement, so I don’t think I will be implementing similar features here, but they are worth
mentioning as Snapchat’s privacy features are incredibly well built and it would be a good idea to
view them as potential future developments.

Features
Based on my research into existing solutions and the information I gathered in the interview with my
stakeholder, I have enough information to compile a list of features that should be implemented into
the application during development.

Some of the features that were observed in other applications may not be included in this application
because they would be determined as “unnecessary features” by the stakeholder, however there are
some quality of life or customisation features that I will not include in this application that might be
viable candidates for implementation in future development.

Clearly the primary feature is a text-based messaging system, without this the application fails to meet
its most basic requirement from the stakeholder. Here we are defining a text-based messaging system
as a system which allows users to communicate messages between two or more devices. How the
application will actually do this in practice is something that I will cover in the design phase of this
project.

Next, the app should include a contact management system, such a system would allow users to add
people to a “friends list”, from which they can choose people to add to a chat. That chat could be
one-on-one, or with multiple people. This is necessary because it restricts who users can chat with to
people who also want to chat to them, if they don’t want to chat with them, they can simply not accept
their friend request, in which case they cannot be added to any chats.

The app should also include a page where users can manage their invitations, these could be friend
requests or invitations to a chat. This will allow users to choose what they are a part of and who they
can talk to, an essential feature for an application concerned with social networking.

Other features that could be included are an automated moderation system, which would monitor the
content of user’s messages and report suspicious activity for judgement by a human team. Profile

15

pictures, which is simply a customisation option and does not necessarily provide any extra
functionality to the base purpose of the application. VoIP voice calling, which would provide another
communication option to the application, but is not specifically requested by the stakeholder, and the
complexity of such a feature is not something that I would feel comfortable dealing with in this
project.

Limitations
Given the essential features of this project, there are a number of limitations imposed upon devices
that will be using the end product.

Firstly, any device that uses the application, or intends to use it, will require access to the internet,
since the application transfers data over the internet to the server and other devices, it will require
access to the internet to be able to make these transfers. This also brings us onto the next requirement
which is specific to an Android application. In order to perform networking operations the application
will require permission from the operating system and the user to access the internet, furthermore
android requires that applications perform networking in a separate process to the one in which the UI
is being processed. This places restrictions on the way this part of the system can be designed, and
will undoubtedly complicate some areas of processing on the UI thread. The reason android requires
this is because networking can take a long time in some cases, so performing these operations on the
UI thread will cause the UI to be unresponsive for some time, this is a very fair reason, so the
complications it brings are generally worth it.

Another limitation is the computation resources available to the application, end-to-end encryption
can be fairly computationally expensive so it is likely that a CPU with reasonable performance is
required, generally modern mobile devices will have sufficient performance and computational
resources for such a task, although they are limited compared to a desktop computer. The device
should also have enough memory to be able to handle 2048-bit integers, as this is generally a good
standard for encryption. Finally, the device should have enough secondary storage to store all of the
data that the application must keep on the device. This might include information about chats the user
is a part of and data required to authenticate the user when opening the application.

Although the most basic requirements are a device running the Android OS, and the hardware
required for networking, namely some form of network interface card, and the drivers necessary to
operate the hardware required by the application.

Some of these limitations limit the devices the application can be used by, and some place a restriction
on the way the application can be designed, as such we should consider all of them during the design
of this application.

Further limitations might be the fact that I have not planned to implement the ability to remove
friends, or block people. These are fairly key features of social networking applications, however I do
not necessarily see the need for them in this application, given the small scope. If I planned to fully
release this application to the public I would consider implementing such features, as they might not
be particularly complex, however in order to reduce the complexity of the solution I will develop here
I will avoid implementing these features, although they are candidates for future development points.

16

Requirements
Following is a list of conditions that must be met in order for the application to function properly on a
device. These are things that are absolutely necessary, not things that will simply improve the
performance of the application, if these conditions are not met by a device, the application will not be
able to function on that device.

● Android OS - Required to run an Android application. Also an OS of any kind is required for
a computational device to function.

● Internet permission granted by the user / OS - Allows the application to make use of the
device's internet access. The hardware side would be handled by the OS, but the application
can make API or SDK calls that require network access.

● Concurrent processing design - Maximises efficiency, and is required to perform networking
operations in android applications.

● Enough memory to handle 2048-bit integers + the memory required by the rest of the
application - Required for sufficiently secure end-to-end encryption system to function.

● Enough secondary storage to store the application and all the data it requires to run effectively
- If this is not met, the device will not be able to be installed on the device, or at the very least
it will not function properly.

And a list of requirements specified by the stakeholder.

● The application must be able to send messages.

This is fairly self explanatory, these messages should be text based and be transferred through the
server between client applications. This is surely the most basic requirement of a text based
communication system such as this.

● The application should have a contact management system.

This implies that the application should provide an interface to find other users, and allow the user to
“add” them to their contacts list by sending them a friend request. If the other user accepts this
request, the two users will be added to each other’s contact list by creating two friendship records in
the database. Users can also decline friend requests, but at the moment I have no plans to implement a
way for users to remove friends, although this would be fairly simple to implement, I don’t see any
requirement for it at the present moment.

● The application should provide an interface to create chats between users.

This will take the form of a separate activity, or page of the application called InviteToChatActivity,
which will allow users to send chat invites to other users. These chat invites can be for an existing
chat that the user is already a part of, or for a new chat which can be created through this part of the
application.

● The application should provide an interface to send friend requests / invites to chats

This is covered by the previous two requirements.

17

Success criteria
In order for the end product produced by this project to be considered successful, it must meet certain
success criteria which are derived from the essential features and limitations of the solution.

● The application should allow users to communicate text based messages through the internet.

This is the most basic requirement of the solution, without this the application will be relatively
pointless. We will test that this criteria is met by installing the application on multiple devices and
attempting to send messages between them using the application. If the messages can be read as they
were typed in, and the application says they are from the correct user, then this criteria will have been
met. These messages should be sent through chats, which are effectively a way to group multiple
users together to allow them to send messages between each other.

● Minimal data is stored on the client device

This suggests that the application should be as lightweight as possible, while still functioning
effectively. Only data that is private to the user should be stored on the client device, such as private
keys attached to chats that they are a part of, authentication data, and data about the chats they are a
part of. This data is essential to the effective function of the application and as such should be stored
on the client device, other information can be stored on the server, and retrieved by clients as it is
required. The average size of Android applications is 14.6 MB, so I will aim for this as a target.

● End-to-end encryption between clients and the server, and between clients

This implies that communication between a client device and the server should be encrypted, likely
using a key set generated at the point the client connects to the server. Encryption between clients is
slightly more obscure.

If we use a cloud based architecture, i.e. clients connect to the server only, then clients will not
communicate directly with clients. When a message is sent to a chat it is encrypted using the chat’s
specific key set, which will be generated when the chat is created. This means that when the message
is sent to the server it will have been encrypted twice, using two separate key sets.

● Scalable server design

The server should be able to handle a high volume of traffic, perhaps the best way to do this would be
through a concurrent system design. I will test that this criteria is met by deploying the application to
a number of people and asking them to use the application at the same time. If the function of the
client application is unaffected by the high volume then this criteria will have been met. We can also
monitor the behaviour of the server for any anomalies that occur due to the high traffic.

● Scalable client application

The meaning of this is slightly less clear, here I am not necessarily talking about a client application
which performs well under high traffic, since the client application will not necessarily have to endure
such high traffic. Instead I simply mean that the application should be designed and implemented in
such a way that does not inhibit potential future developments, so the code should be readable and

18

maintainable, and should have “space” for future features, i.e. the design should facilitate future
developments.

Design

Decomposition
Clearly there will be two separate parts of this application which will work together to produce the
desired functionality in the final product. Those two parts are the server, and the client application.
These two parts can then be broken down further into even smaller parts which work together to
produce those larger parts. In this section of the project we will discuss each component of the
application.

Server
The server is the central point of the application, all client devices will connect to the server and
perform operations through the server

Database
The Database will store all information relevant to the application, the primary database structure will
be aMySQL database, with some extra structures for different bits of data. Following is an entity
relationship diagram which details the contents and structure of the database.

19

This structure has been derived from the primary functions of the system. We will need to store users
in the database since client applications will need to authenticate themselves with the server upon
connection, and there will be no way to do this if user data is stored only on the client device. The
client should store its user data so it can authenticate itself, but the server should store data for all
users.

The server will also store friendships, these are links between two users who are friends, the
application will request these links to display them on the application, so that the user can invite
people to chats. Friend requests will also be stored on the server, so that the user can choose to accept
or decline them, these must be stored on the server since they are subject to frequent change, and a
client application may need to get the friends of another user, for whatever reason. To facilitate this,
this data must be stored centrally on the server.

Information about all chats should also be stored on the server, since client applications will need to
request this when they are joining a chat. So logically they must be stored centrally, otherwise the
client will not be able to get this information and it won’t know anything about the chat it is joining.
Likewise, chat invitations must also be stored centrally since these will be subject to frequent change,
and are effectively a form of communication between clients.

Encryption keys and messages will be stored differently to the rest of the data given above, since they
must be handled in a different way. Keys will be stored in a hash table which links the PublicKeyID
field of the Chats table to the index of the key in the hash table, this will be determined by the hash
value of the key object, this will significantly improve the efficiency of requesting a key from the
server, since it can be requested with a constant time complexity, rather than searching through a
potentially very large database. The number of messages in a chat at any given time will be capped at
10, and all the messages in a chat will be requested when it is opened, so rather than storing all
individual messages in a database table, we will store them inMessageQueue objects, which will in
turn be stored in a hash table where the index is the ChatID of the chat aMessageQueue is linked to.
Again this is just a much more efficient design than the use of a database table.

In order to protect the privacy of this sensitive data, the database will be closed off from direct outside
access, to access the data it contains, an application not on the local network would have to go through
the main server application, performing the authentication process and then only being able to select
certain data in certain ways which the server permits. You will be able to access the database if you
are connected to the local network, primarily for debugging and maintenance purposes, but devices
outside the local network will only be able to access it through the server. Also on the topic of
security, when a client sends a chat invitation, they must send the chat’s private key along with it,
since the accepting client will require it in order to use the chat. It is a security risk to store these on
the server for an extended period, so we should implement a process to delete them after a set period,
say 30 days. We could also delete the entire chat invitation at that point, and potentially friend
requests.

As such we could have the following pseudocode implementation of the database.

20

MySQLHandler

This class requires extra configuration data which will be stored in a file under the path
./Assets/MySQL_Config.json, as the name suggests, this is a JSON file and should be written in the
following format:
{

"connection_url": <string>, // This is the JDBC link to connect to the server

"username": <string>, // This is the username the server should use to connect to the MySQL database

"password": <string> // This is the password the connection should be authenticated with

}

FUNCTION getConnection(connection_url, username, password) // Get a connection to the MySQL server using the given

paraneters

FUNCTION loadJSONFile(path) // Loads the JSON file at path

CLASS MySQLHandler

VAR connection // Represents a connection between the program and the MySQL database

VAR config // Stores the current MySQL configuration

FUNCTION MySQLHandler()

// Get the MySQL configuration

config = GetMySQLConfig()

// Start the connection to the MySQL server

StartConnection()

END FUNCTION

FUNCTION GetMySQLConfig()

// Returns the configuration of the MySQL server as given by the JSON config file

RETURN loadJSONFile("Assets/MySQL_Config.json")

END FUNCTION

FUNCTION StartConnection()

// Get a connection to the MySQL server

connection = getConnection(config.get("connection_url"), config.get("username"), config.get("password"))

END FUNCTION

FUNCTION Select(query)

// Perform a Select statemenet on the database (or another query which produces a result set)

VAR stmt = connection.createStatement()

stmt.execute(query)

RETURN stmt.getResultSet()

END FUNCTION

FUNCTION Update(query)

// Perform an Update statement on the database (or another query which does NOT produce a result set)

VAR stmt = connection.createStatement()

stmt.execute(query)

END FUNCTION

FUNCTION GetUserByID(int UserID) // Get a user by their ID in the database

FUNCTION GetUserByUsername(String Username) // Get a username by their username in the

database

FUNCTION GetUserByDisplayName(String DisplayName) // Get users whose display names match

DisplayName + "%"

FUNCTION GetFriendshipByID(int FriendshipID) // Get a friendship by its ID in the database

FUNCTION GetFriendshipByUserID(int UserID) // Get friendships by their user ID in the

table

21

FUNCTION GetFriendshipByUserIDAndFriendID(int UserID, int FriendID) // Get a friendship by its user ID and friend

ID in the table

FUNCTION GetFriendRequestsByRecipientID(int RecipientID) // Get friend requests by their recipient ID

FUNCTION GetFriendRequestsBySenderID(int SenderID) // Get friend request by their sender ID

FUNCTION DeleteFriendRequest(int FriendRequestID) // Delete a friend request from the table

where the ID is FriendRequestID

FUNCTION GetChatByID(int ChatID) // Get a chat by its ID in the database

FUNCTION GetChatByPublicKeyID(int PublicKeyID) // Get a chat by its public key ID

FUNCTION GetChatInviteByID(int ChatInviteID) // Get a chat invite by its ID

FUNCTION GetChatInvitesByRecipientID(int RecipientID) // Get chat invites by their recipient ID

FUNCTION GetChatInvitesBySenderID(int SenderID) // Get chat invites by their sender ID

FUNCTION DeleteChatInvite(int ChatInviteID) // Delete a chat invite where ID ==

ChatInviteID

FUNCTION AddUser(User user) // Add a user to the database

FUNCTION AddFriendship(Friendship friendship) // Add a friendship to the database

FUNCTION AddFriendRequest(FriendRequest friendRequest) // Add a friend request to the database

FUNCTION AddChat(Chat chat) // Add a chat to the database

FUNCTION AddChatInvite(ChatInvite chatInvite) // Add a chat invite to the database

END CLASS

MessageStore
FUNCTION CreateNewHashTable() // Function which creates a new hash table

FUNCTION LoadHashTableFromFile(path) // Function which loads a hash table from a file at path

FUNCTION WriteHashTableToFile(path, table) // Function which writes a hash table to a file at path

FUNCTION Revert(data) // Revert data to its original state (undo changes)

CLASS MessageStore

VAR data // Hash table which stores message queues

FUNCTION MessageStore()

// If the data file exists, read the hash table from the file, or create a new hash table and write it to the

file location

IF "Assets/data/MessageStore.bin" exists THEN

data = ReadFromFile()

ELSE

data = CreateNewHashTable()

WriteToFile()

END IF

END FUNCTION

FUNCTION ReadFromFile() // Read the hash table from the file

RETURN LoadHashTableFromFile("Assets/data/MessageStore.bin")

END FUNCTION

FUNCTION WriteToFile() // Write the hash table to the file

WriteHashTableToFile("Assets/data/MessageStore.bin", data)

END FUNCTION

FUNCTION GetMessageQueue(id) // Get a message queue from the hash table

RETURN data.get(id)

END FUNCTION

FUNCTION AddMessageQueue(queue) // Add a message queue to the hash table

data.put(queue.id, queue)

WriteToFile()

IF write failed THEN

Revert(data)

RETURN failed

ELSE

RETURN success

END FUNCTION

22

FUNCTION RemoveMessageQueue(id) // Remove a message queue from the hash table

data.remove(id)

WriteToFile()

IF write failed THEN

Revert(data)

RETURN failed

ELSE

RETURN success

END FUNCTION

END CLASS

MessageQueue
CLASS MessageQueue

VAR ChatID // ID of the chat this message queue is linked to

VAR data // The queue containing the messages in this chat

FUNCTION MessageQueue(ChatID)

ChatID = ChatID // Assign the chat id

data = Queue(10) // Create a new queue of maximum size 10

END FUNCTION

FUNCTION Push(message)

data.Push(message)

END FUNCTION

FUNCTION Pop()

RETURN data.Pop()

END FUNCTION

FUNCTION Get(i)

RETURN data.Get(i)

END FUNCTION

FUNCTION GetJSONString()

VAR result = StringArray(10) // Create a string array of size 10

FOR i = 0, i < 10

IF data.Get(i) == null

continue

END IF

result[i] = data.Get(i).GetJSONObject().toJSONString();

END FOR

RETURN result

END FUNCTION

END CLASS

KeyStore
FUNCTION openFile(path) // Open a file at path

FUNCTION createNewHashTable() // Create a new hash table

CLASS KeyStore

VAR data // Hash table containing keys

VAR dataFile // The file which contains the hash table

FUNCTION KeyStore()

dataFile = openFile("Assets/Data/KeyStore.bin") // Open the data file

// Check if the file contains the hash table.

23

// If not we should create a new one.

IF dataFile contains hash table THEN

data = ReadFromFile()

ELSE

data = createNewHashTable()

WriteToFile()

END IF

END FUNCTION

FUNCTION ReadFromFile()

RETURN readFile(dataFile)

END FUNCTION

FUNCTION WriteToFile()

writeFile(dataFile, data)

END FUNCTION

FUNCTION GetKeyPair(keyID)

FUNCTION AddKeyPair(pair)

FUNCTION RemoveKeyPair(keyID)

END CLASS

Database
CLASS Database

VAR MySQLHandler

VAR MessageStore

VAR KeyStore

// This class effectively just a wrapper class.

// ALl methods implemented in this class essentially just call

// methods in the other database systems.

//

// To reduce the size of this pseudocode I won't show them here,

// because there isn't much point anyway.

END CLASS

The Database class is effectively a wrapper class that simplifies the rest of the program’s access to the
various database systems by providing a single unit to access them through, and determining which
system a request should be directed to.

Server functions
The primary use of the server will be to retrieve data from the database that the application needs for
whatever reason. Following is an overview of the data that will be stored in the database.

● User data
● Chats
● Friendships
● Invitations (to chats or friend requests)
● Messages
● Public encryption keys for chats

There may also be a number of ways that users can request such information, for example a user could
be found by searching for their display name, username, or their user ID.

The client application will also need to show notifications when certain events happen, since the
server is the central point of the entire application, it will know when these events happen, so it should

24

have some way of notifying the relevant client application when those events happen. This could be
done using a listen rule system. Client applications can register so called listen rules with certain
conditions, when a client makes a request the server will check all registered listen rules to see if the
request meets any of the rules’ conditions. If they are, then the request is forwarded to the client
application that registered the rule and the request is then handled as normal. This adds a few extra
functions to the server.

● Adding listen rules
● Removing listen rules

The server will consist of a number of parts which work together to create a concurrent server
program which handles user requests efficiently. These main parts are:

● Server class
○ Responsible for listening for and accepting incoming connections from client devices.
○ Passes accepted connections to a queue.

● ConnectionHandler class
○ When given a connection, this class will handle requests that come through this

connection in a separate thread, until the connection is closed.
● QueueManager class

○ Checks if the queue has any new connections in it.
○ If it does it will look for a free connection handler and pass the first connection in the

queue to the free handler.
○ Or it will wait until a handler is free.

From this we could interpret the following pseudo code implementation

Server

This class will take extra configuration data stored under Assets/Server_Config.json:
{

"port": <string (castable to int)>, // The port the server should accept connections on

"maxThreadCount": <string (castable to int)> // The maximum number of handlers that should be created by the

server

}

FUNCTION openFile(path) // Open a file at the given path

FUNCTION loadJSONFile(file) // Load the contents of a JSON file

CLASS Server

VAR port // The port on which this server will accept connections

VAR maxThreadCount // The maximum number of handler processes

VAR connectionHandlerPool // Array of connection handlers

VAR connectionHandlerQueueManager // The queue manager process for the connection handler pool

VAR db // Database instance

VAR listenRules // List of currently active listen rules registered by client devices

FUNCTION main()

VAR server // Server instance

VAR serverSocket // Server socket which will accept connections

WHILE (true)

// Accept a connection and then push it to the queue manager's queue

VAR connection = serverSocket.accept()

25

connectionHandlerQueueManager.queue.Push(connection)

END WHILE

END FUNCTION

FUNCTION Server()

VAR config = GetConfigFile() // Get the configuration file for the server

// Assign values from the configuration data

port = config.get("port")

maxThreadCount = config.get("maxThreadCount")

END FUNCTION

FUNCTION GetConfigFile()

VAR configFile = openFile("Assets/Server_Config.json")

RETURN loadJSONFile(configFile)

END FUNCTION

END CLASS

Handler

I should clarify that this is intended to be a parent class, not an implementation of the actual
connection handler, that will come later and will inherit from this class.

The reason for this class is that it will simplify the process of adding other handler types later if they
are needed.

CLASS Handler

VAR socket // The main communication TCP/IP socket

VAR threadNum // The thread number, used in debug messages

VAR className // The name of this class (used in debug messages)

VAR keyPair // This handler's encryption key pair

VAR clientKeyPair // The client's encryption key pair

VAR busy // Determines if the handler is busy or not

VAR server // The current server instance

VAR queueObject // The object supplied to this handler by the queue

VAR authenticated // Determines if the connected client is authenticated

VAR lrSocket // TCP/IP socket used for communicating listen rule triggers

FUNCTION Handler(socket, threadNum, className) // Constructor method

FUNCTION InitializeIO() // Initialize the I/O streams for the main socket

FUNCTION StopHandler() // Pauses this handler's execution process

FUNCTION DebugLog(message) // Output a message with this handler's signature

FUNCTION Send(obj) // Send an object over the main socket

socket.sendObject(obj)

END FUNCTION

FUNCTION LrSend(obj) // Send an object over the listen rule socket

lrSocket.sendObject(obj)

END FUNCTION

FUNCTION Receive() // Receive an object over the main socket

RETURN socket.readObject()

END FUNCTION

FUNCTION Close() // Called when connection is closed

socket.close()

lrSocket.close()

// Remove listen rules created by this handler from the listen rules list on the server

VAR emptyPass = false

26

WHILE (!emptyPass)

emptyPass = true

FOR i in 0 to server.listenRules.size()

IF (server.listenRules.get(i).handler == this) THEN

server.listenRules.remove(i)

emptyPass = false

break

END IF

END FOR

END WHILE

END FUNCTION

END CLASS

Server process flow diagram

Following is a flow chart which illustrates the server process. Each box is a single process.

The ConnectionHandler will contain a number of methods, each of which handling a different type of
request. These requests will require different information to complete, these methods will assume that
this data is present in the request body, but will cause errors when this data is not present. This way
the server can catch these errors and respond appropriately to the client. The possible types of requests
are listed below, with the data they require in the form of a JSON object, which is how they should be
sent to the server, and the data they return (all methods may also return null in certain circumstances,
this may be if the data is not found, or an error occurs), the type of request will be stored under the
key “type”:

● Authenticate
○ “Data”: User database entity containing the authentication data for the user.

■ String: “failed” - Returned if authentication fails for any reason
■ User - The full user data that the client just authenticated, returned if

authentication is successful.
● Get User

○ “data” : User database entity containing the data specified by the selector field.

27

○ “Selector”: “id”, “username”, or “displayName”, this is the field in the data object
which contains the information the server should search by to find the requested user
data.

■ User - Returned if selector is “id” or “username”, since there will only ever
be 0 or 1 result for this.

■ User[] - Returned if selector is “displayName”, since this field allows
duplicate values.

● Get Friendship
○ “Data”: Friendship database entity containing the data specified by the selector field.
○ “Selector”: “id”, “userID”, or “userID&FriendID”, this is the field/s in the data object

which contains the information the server needs to find the requested friendship
record.

■ Friendship - Returned if selector is “id” or “userID&FriendID”, since these
fields are unique to singular records.

■ Friendship[] - Returned if selector is “userID”, since this field can be
duplicated across multiple records.

● Get Friend Requests
○ “Data”: The friend request database entity containing the data required by the server

to search for friend requests.
○ “Selector”: “senderID” or “recipientID”.

■ FriendRequest[]
● Get Chat

○ “Data”: The Chat database entity containing the ID of the chat to retrieve.
■ Chat

● Get Chat Invite
○ “Data”: The chat invite database entity containing the required data.
○ “Selector”: “id”, “senderID”, or “recipientID”

■ ChatInvite: Returned if selector is “id”
■ ChatInvite[]: Returned if selector is “senderID” or “recipientID”

● Get Public Key
○ “Data”: Integer object containing the ID of the key in the keystore.

■ KeyPair
● Get Message Queue

○ “Data”: Integer object containing the ID of the message queue in the message store.
■ MessageQueue

● Add User
○ “Data”: The user database entity containing the user data to add to the database.

■ User: Returns the full data of the user that was just added to the database
● Add Chat

○ “Data”: The chat database entity containing the chat data to add to the database.
■ Chat: Returns the full data of the chat that was just added to the database.

● Add Listen Rule
○ “Data”: The listen rule to add to the server.

■ Integer: Returns the ID of the listen rule
● Remove Listen Rule

○ “Data”: The ID of the listen rule to remove from the server.

28

■ String: “done” or “failed”, depending on whether or not the operation was
successful

● Accept Friend Request
○ “Data”: The friend request database entity containing information about the friend

request to accept.
■ String: “done” or “failed”, depending on whether or not the operation was

successful
● Decline Friend Request

○ “Data”: The friend request database entity containing information about the friend
request to decline.

■ String: “done” or “failed”, depending on whether or not the operation was
successful

● Accept Chat Invite
○ “Data”: The chat invite database entity containing information about the chat invite to

accept.
■ KeyPair: The private key of the chat that the client just accepted an invitation

for
● Decline Chat Invite

○ “Data”: The chat invite database entity containing information about the chat invite to
decline.

■ String: “done” or “failed”, depending on whether or not the operation was
successful

● Send Message
○ “Data”: The message database entity to add to the database.

■ String: “done”
● Send Friend Request

○ “Data”: The friend request database entity to add to the database.
■ String: “done” or “failed”, depending on whether or not the operation was

successful
● Send Chat Invite

○ “Data”: The chat invite database entity to add to the database.
○ “keyPair”: The private key for the chat this chat invite refers to.

■ String: “done” or “failed”, depending on whether or not the operation was
successful

It will also be responsible for handling the handshake process at the start of a new connection. This
process will involve generating a new encryption key pair, and receiving the client’s generated
encryption key pair, and starting the separate listen rule socket. This process effectively establishes all
necessary communication links between the client and the server, and enables all communication to be
encrypted.

Build targets
So we have covered the contents of the server program, let us look now how it should be built.

The client application may require access to some parts of the server, not necessarily to use them but
to be aware of the types and classes involved. To do this we should build the server into a library JAR
file, which I will call ServerLib.jar.

29

Of course there should also be an executable build, which will also be included as a JAR file called
MessageCatServer.jar, which has the main class / method specified as
com.nathcat.messagecat_server.Server.main(String[] args).

The RSA implementation will also be packaged into a library JAR file called RSA.jar.

Client application
The client application is the front end of this application, this is the part of the system that the users
will interact with. This will take the form of an Android application.

The main process in an Android application is the UI thread, this is where all UI related operations
must be performed, and it is the process which is launched when the app is opened by the user.
Android requires that applications perform networking operations on a separate process, the reason
for this is that networking operations can often be slow, which will block the operation of the UI
thread, leading to an unresponsive UI. Handling networking processes on a separate process avoids
this issue by having the networking operations block a different process. So we will need to create a
separate process when the application is launched, this process should wait until it is required for a
networking task, this can be accomplished by using the Android SDK Handler class, we can derive
from this class and override its handleMessage(Message) method to perform networking tasks in a
separate process, as required. We could improve this further by creating a foreground service which
provides an interface between the client application and the Handler. The client application can bind
to this Service and make requests through there, the Service would handle communicating with the
Handler, this offers a layer of abstraction to the client application’s source code and a more layered
approach which is generally more maintainable. To clarify, the Handler would perform a networking
task given to it by the Service, and then call a callback function, which will perform some operation
with the data that was received from the server. The callback function will be executed within the
Handler process however, so it should be written with this in mind.

General process
Following is a flow chart illustrating the general process the application will follow, particularly in the
startup phase. There will be different parts of the application but this is the general process the overall
application will follow.

30

Networker service and Connection handler
These are the parts of the application that should run persistently in the background and will be
responsible for handling communication between the client application and the server. They are
relatively simple processes in practice but they may be difficult to implement, although the Android

31

SDK provides ways for us to implement such a system.

The application will also create a number of listen rules when the application starts that will show
notifications when the following events occur:

● The user is sent a message through one of their chats
● The user is sent a friend request
● The user is sent a chat invite

32

Following is a flow chart illustrating the listen rule handler process.

This is a comparatively simple process, it does not need to be particularly complex since its only job
is to execute callbacks when a listen rule is triggered on the server. The listen rule trigger request is a
copy of the request that triggered the listen rule, along with information about the listen rule that this
request triggered.

This service should be started when the device turns on, or if the service has not yet started it should
be started by the application, so it will have to test if the service is already running, and we will likely
have to use a BroadcastReceiver to get the service to start when the device has finished booting up.

33

Usability
With so many people using applications nowadays, they must always be designed with usability
features to ensure that anyone can use them. The application should be simple in its design and be
clear in how it is to function.

Given that the concept of this application is relatively simple, I don’t think it would be necessary to
create an explicit tutorial on how to use the application, but we should ensure that the design is
intuitive and similar in ways to other messaging applications, to ease the transition and make it
simpler to use.

There is the option of creating a website which provides helpful instructions on how to use the
application, perhaps some kind of forum, but this is not part of the scope of this project. Each page of
the application should have a clear function, and the way to use them should be clear from the way it
is designed as well. We can also use text hints and descriptions to show what each component on the
page does.

UI
The user interface is the part of the application that the user will interact with, as such it should be
well designed and user friendly. UI operations in Android will operate in a thread separate to the
connection handler, so we should design the interface with the knowledge that there may be periods
where the interface is forced to wait to receive certain information before it can be displayed.

The UI for this application can be separated into 7 distinct pages:

LoadingActivity

This page is the starting point for the application, it will be responsible for ensuring that all required
parts of the application are active and accessible before loading the main application page.

34

And a wireframe design of this page.

35

CreateNewUserActivity

This page will be loaded if there is no valid user that can be authenticated on the device. It will allow
users to create an account which the application will save authentication details for so it can login
automatically whenever the networker service is started.

When the user presses the submit button, the application will send a request to the server to create a
new user with the entered information, but before this it should perform some checks to ensure that
the data is valid:

● Request the entered username from the server to ensure there are no other users with the same
username (although this check may be implemented server side as it is just easier to do it
there rather than have unnecessary requests into the server).

● Check that the password is entered correctly by having a password re-entry box and checking
if the entries match.

36

These checks should ensure that the user’s entry is valid and acceptable by the application and the
server. Furthermore, to improve the security of the user’s authentication information, their password
will be hashed using the SHA-256 hashing algorithm before being sent off to the server. This will be
implemented client side to ensure that the user’s actual password never leaves the device they entered
it on.

And a wireframe design of this page.

37

MainActivity

This is the main page of the application. Once all checks have been done and the user is authenticated,
this page will be loaded. All the primary functions of the application will be accessible from this page
via a drawer menu which can be pulled out from the side of the window.

38

This page will include a main window, which has a pull out menu on the side of the window, and a
main display port, which displays a fragment, which is essentially a sub-page.

Here is the fragment used to display the chats the user is a part of (ChatsFragment):

39

The fragment used to display messages in a chat, and that allows users to send messages to that chat
(MessagingFragment):

40

A fragment to display the user’s friends list (FriendsFragment):

41

A fragment that allows users to search for other users by their display name (FindUserFragment):

And finally, a fragment which displays invitations sent to the user, allowing them to accept or decline
them (InvitationsFragment):

42

The invitation dialogue will be specific to a type of invitation, for example a friend request might say,
“{displayName} wants to be friends!”, or a chat invitation might say “{displayName} invited you to
chat!”.

InviteToChatActivity

This page will be responsible for allowing the user to invite others to a chat. They will be given the
option to choose between creating a new chat and inviting their friend to that new chat, or just inviting
their friend to an existing chat.

43

And a wireframe design of this page for inviting a user to an existing chat:

And for a new chat:

44

Notifications
Notifications are an important part of a lot of applications, especially in this one since users will not
be telepathically able to know when they have received a new message, or a friend request, or maybe
a chat request, so the application should have a method of alerting the user when these events occur so
that they are aware of it and can respond how they see fit.

Conveniently, the Android SDK provides a way for us to create notifications from the app using
notification channels. These channels have a set priority and certain rules that notifications entered
into them must follow, and they are a way of easily grouping together notifications from apps which
have different purposes.

In this application there will be two main types of notification, the first type is the service
notifications. This is a notification which is always present in the notification bar, and alerts the user
that the networker service is running, it will say something like, “The MessageCat Service is
running.”. This notification is required to create a persistent service, like we are trying to create with
the notification service.

The second type of notification is alerts for social events within the application, this will cover events
such as:

● New messages in chats that the user is a member of.
● Friend requests sent to the user.
● Chat requests sent to the user.

So, we know how to implement notifications from an Android point of view, but how do we actually
know when these events occur, and how do we get the data required to display information about
them to the user? The answer to that lies in the listen rule system which will be implemented in the
server, I won’t go into detail about this system here as it is covered in the server design section above,

45

but the point is, we can register listen rules with the server and assign callbacks to them within the
application which take the request data as a parameter, these callback methods would then create the
notification with the information about the event. This would require another process called the
ListenRuleCallbackHandler as part of the networker service, since this part of the application would
be very similar in functionality to the ConnectionHandler, I won’t cover it in excessive detail, but the
main difference is that rather than handling incoming requests, it only receives listen rule trigger
messages from the server for listen rules that the client has created, it should then link this to a
callback given to it when the listen rule was created, and call said callback with the request data, this
suggests the following flow chart illustrating the listen rule process from the client side.

Local storage
To improve the efficiency of the application, we can, and should, store some data in the client device’s
local storage. Some data of course must be stored locally for security reasons. Following is a list of
data which will be stored locally.

● User data, used for authentication.

46

● Chats the user is a member of
● Private keys for chats the user is a member of

This data will be stored in three files, each of which containing a Java object which contains the
required data:

● UserData.bin
○ Contains an instance of the User class.

● Chats.bin
○ Contains an array of chats, Chat[].

● KeyStore.bin
○ Contains a hashmap linking the public key ID of a chat to its private key.
○ HashMap<int, KeyPair>.

Main process to connection handler process communication
The main process must connect to the connection handler in order to make network requests to the
server. Since the connection handler is in a separate process, we must have a method of
communicating between processes. This is the aim of the networker service.

The point of the networker service is that it runs persistently, meaning that it should not be interrupted
by Android or another process (with the exception of the main application process). It is important to
state that the service and the UI thread execute in the same process, which means that I cannot simply
perform network requests from the networker service, since it will still block the UI thread, which is
something Android does not allow. So the networker service manages the state and function of the
connection handler, which manages the connection between the client and the server. The UI thread
binds to the networker service, obtaining an instance of it, and is then able to send requests through it
which are forwarded to the connection handler, which forwards them on to the server.

This process avoids having networking operations on the UI thread process, but introduces a new
problem, if the UI thread is not blocked while this network request is waiting to be fulfilled, how does
it know when it has completed, and how should it pass the response back so that the UI thread can
handle it appropriately? In order to solve this problem I took inspiration from Node.js’ asynchronous
functions (sort of). A long time ago I developed a web application which made a number of web
requests fairly frequently, and I used Node.js’ asynchronous processing model to do this, and I created
callback functions which were executed when these requests were completed. These callback
functions took the response from the request as a parameter, and handled them accordingly, and I
managed them using function pointers, although a more accurate term outside of C/C++ might be
function references. By passing a reference to a function, you can execute that function anonymously,
and pass it as an argument into other functions, which allows me to pass these callback functions into
the asynchronous web request functions.

Now, Java does not (as far as I am aware) have an asynchronous programming model, but the same
concept can be applied to synchronous programming in separate processes. I could create interfaces
which declare callback methods which can be implemented when a request is made, and then pass the
callback to the connection handler to be executed when a response is received from the server. I
should consider the fact that this callback will be executed in a different process and a different
context than the the UI thread, Java will handle the context by using instance capturing, but UI
operations must be performed on the main thread so we should use Android SDK methods for this,

47

there is one in particular called Activity.runOnUIThread(Runnable action), which allows us to execute
a lambda function on the UI thread.

Algorithms
The two formal algorithms I will be using in this project are implementations of a Queue data
structure, and RSA asymmetric encryption. I will not use a library for these, although they are
available, since I can then create a more customised implementation which works better with this
application.

Queue Data Structure
A key part of this application is the use of queue data structures, these allow for efficient processing of
multiple requests and are integral in a number of the application systems. A queue is a first in first out
data structure, following is a pseudocode implementation of a queue.

CLASS Queue

VAR data // Data array

VAR maxSize // The maximum size of the queue

VAR endPointer // Pointer for the end of the queue

FUNCTION Push(obj)

IF size of data > maxSize THEN

RETURN FAILED

END IF

data[endPointer] = obj

endPointer++

END FUNCTION

FUNCTION Pop()

IF size of data == 0 THEN

RETURN FAILED

END IF

VAR val = data[0]

data[0] = NULL

RETURN val

END FUNCTION

END CLASS

This will be implemented as part of the database.

RSA Encryption Algorithm
End-to-end encryption plays a big role in securing user data, so it is important to ensure that this
system is well built and works properly, so that the user’s data is properly secured.

This application will use an Asymmetric encryption algorithm called RSA. RSA is a very common
encryption algorithm used in many modern applications. It makes use of very large prime numbers
and modular arithmetic to encrypt and decrypt messages using a public and private key. The following
is the process for generating an RSA key pair for encryption and decryption.

First, choose two random coprime integers and .𝑝 𝑞

48

Let .𝑛 = 𝑝𝑞

We must now choose a value for , also known as the public key exponent, the reason for this name𝑒
will become clear later. The standard value for is 65537, so we will use that.𝑒

Let .𝑒 = 65537

The public key is defined as , and the private key is defined as , so𝐾
𝑝𝑢𝑏𝑙𝑖𝑐

= {𝑛, 𝑒} 𝐾
𝑝𝑟𝑖𝑣𝑎𝑡𝑒

= {𝑛, 𝑑}

we now need to find . This is where we need to use modular arithmetic,𝑑
, therefore can be found by finding the inverse modulus of and𝑒𝑑 = 1 𝑚𝑜𝑑 (𝑝 − 1)(𝑞 − 1) 𝑑 𝑒

.(𝑝 − 1)(𝑞 − 1)

Now we have our key pair, we can perform encryption and decryption:

, .𝐾
𝑒𝑛𝑐𝑟𝑦𝑝𝑡

(𝑥) = 𝑥𝑒 𝑚𝑜𝑑 𝑛 𝐾
𝑑𝑒𝑐𝑟𝑦𝑝𝑡

(𝑥) = 𝑥𝑑 𝑚𝑜𝑑 𝑛

We will use this method to generate key pairs which can encrypt and decrypt entire Java objects. The
encrypted objects can then be sent over a socket and decrypted into the original object at the other
end. We could do this by splitting an object into its bytes in memory, then combining those bytes into
large integers, and encrypting each of those large integers, to form an EncryptedObject, which is then
what we send over the socket to be decrypted by the recipient.

In order to maintain the security of the user’s data, all data that is transferred between the application
and the server will be encrypted using public and private keys specific to the user. An RSA key pair
will be created for a user upon creation of their account, the public key will be stored on the server,
available for anyone to access, and the private key will be stored on the user’s local device, so that it
cannot be easily accessed by an external user. Messages sent to a user will be encrypted with the
recipient’s public key, and decrypted with their private key upon receipt of the message. This means
that when a user sends a new chat invite, they must give the private key to the server to be stored
temporarily while the invitation is pending. Once an action has been taken or the invite has expired it
should be deleted from the server along with the private key. Furthermore, communications between
the server and the user will be encrypted using a similar method, although slightly modified. The
Server could send data to the user encrypted with their public key, but the user would not be able to
respond with the same key pair, instead each communication will be encrypted using a key pair
generated by the server, at the start of the communication. This will require the development of a sort
of handshake between the user and the server, before the encrypted data is transmitted.

Messages in chats will be encrypted using a keypair, each chat will have a set keypair that will be
created upon the creation of the chat. The public key will be stored on the server, and the private key
will be stored on devices which are members of the chat. This will allow for chats with multiple
members to be encrypted using this method, without storing duplicate messages in the database,
encrypted for every user in the chat.

With recent advancements in Quantum Computing, we are realising that encryption systems such as
RSA are inherently vulnerable, as Shor’s algorithm allows Quantum Computers to break such systems
almost instantaneously. There are a number of Post-Quantum Computing (PQC) encryption

49

algorithms, but I do not plan to implement them here as they can be very complex. However, future
developments to this application may include an implementation of the CRYSTALS-Kyber PQC
encryption algorithm, but for now I will stick with RSA.

I will implement this as a package separate from the rest of the application.

This implementation works with integers, specifically positive integers. If we aim to encrypt a Java
object, we should first break it down into integers using a byte stream, then combining the bytes into a
number of 2048 bit integers, then encrypting each of those 2048 bit integers using this method. There
is a problem in that some of these integers might be negative, so we should create some kind of
wrapper object which will allow the encryption system to handle these integers with a positive sign,
but ensures that it decrypts to a negative integer as required.

SHA-256 Hashing Algorithm
In order to increase the security of storing passwords in the SQL database, I will use a hashing
algorithm called SHA-256 (another, potentially simpler option isMD5, although this algorithm has
been broken, and SHA-256 is significantly more secure thanMD5).

The main advantage of using a hashing algorithm is that the plain text passwords are not stored
directly in the database, which improves the security of the application significantly, as hashing
algorithms cannot be reversed, so even if someone was able to gain access to the passwords in the
database, they would still be unable to access that account, since they cannot obtain the original plain
text password.

Java provides a library which allows us to use some standard hashing algorithms, so I will use this
rather than attempting to implement it myself since these algorithms can be rather complex.

Overall code structure
The overall code structure can be derived from what each part of the application needs to function
properly, in terms of library requirements.

Network requests will be created as JSON objects, there is a Java library which provides classes
which allow us to do this effectively, so this library will be included in both the server and the client
application, since both will require the use of such JSONObjects.

Moving the code I will implement, I will separate different parts of the application into the following
packages.

com.nathcat.RSA

EncryptedObject

Name Type Justification

50

flipSign Boolean attribute Tells the program whether it
not the integer contained in this
object should have its sign
flipped when decrypted.

object BigInteger attribute The encrypted integer.

GetInteger() Method - returns BigInteger Returns the integer contained
by this object, taking into
account flipSign.

GetNaturalNumber() Method - returns BigInteger Returns the integer contained
by this object in positive form.

GetObject() Method - returns Object Get the object described by this
integer by deserializing the
bytes of the integer.

SerializeObject(Object obj) Method - returns byte[] Serialise an object into an array
of bytes.

DeserializeObject(byte[] bytes) Method - returns Object Deserialize a byte array into an
object.

ObjectToNumArray(Object
obj)

Method - returns BigInteger[] Turns an object into an array of
2048 bit integers.

NumArrayToObject(BigInteger
[] arr)

Method - returns Object Turns an array of 2048 bit
integers into an object.

KeyPair

pub PublicKey attribute The public key of this key pair.

pri PrivateKey attribute The private key of this key
pair.

Encrypt(BigInteger message) Method - returns
EncryptedObject

Encrypt a single integer.

Decrypt(BigInteger message) Method - returns BigInteger Decrypt a single integer.

EncryptBigObject(Object
message)

Method - returns
EncryptedObject[]

Encrypt a large object (greater
than 2048 bits) into an array of
encrypted integers).

DecryptBigObject(EncryptedO
bject[] message)

Method - returns Object Decrypt an array of
EncryptedObjects into the
original object.

PrivateKey

n BigInteger attribute The n parameter of this key.

51

d BigInteger attribute The d parameter of this key.

PublicKey

n BigInteger attribute The n parameter of this key.

e BigInteger attribute The e parameter of this key.

RSA

GenerateRSAKeyPair() Method - returns KeyPair Generate an RSA key pair
object.

com.nathcat.messagecat_database

Result (enum)

SUCCESS

FAILED

MySQLHandler

conn Connection attribute Object which represents the
connection to the SQL
database.

config JSONObject attribute JSONObject which contains
the information given in the
MySQL config file.

StartConnection() Method Attempts to create a connection
to the MySQL server.

GetMySQLConfig() Method - returns JSONObject Get the data from the MySQL
config file.

Select Method - returns ResultSet Perform a select query using
the active connection (or any
query that returns a result set).

Update Method Perform an update query using
the active connection (or any
query that does not return a
result set).

GetUserByID(int userID) Method - returns User Get a user by their ID.

GetUserByUsername(String
username)

Method - returns User Get a user by their username.

GetUserByDisplayName(Strin Method - returns User[] Get a list of users whose

52

g displayName display name matches the
pattern “{displayName}%”.

AddUser(User user) Method Add a user to the database.

GetFriendshipByID(int
friendshipID)

Method - returns Friendship Get a friendship record by its
ID.

GetFriendshipByUserID(int
userID)

Method - returns Friendship[] Get a list of friendships with a
given userID

GetFriendshipByUserIDAndFr
iendID(int userID, int
friendID)

Method - returns Friendship Get a friendship record by its
userID and friendID.

AddFriendship(Friendship
friendship)

Method Add a new friendship record to
the database.

GetFriendRequestsByRecipient
ID(int recipientID)

Method - returns
FriendRequest[]

Get a list of friend requests by
their recipientID.

GetFriendRequestsBySenderID
(int senderID)

Method - returns
FriendRequest[]

Get a list of friend requests by
their senderID.

DeleteFriendRequest(int
requestID)

Method Delete a friend request from
the database.

AddFriendRequest(FriendRequ
est fr)

Method Add a friend request to the
database.

GetChatByID(int chatID) Method - returns Chat Get a chat by its ID.

GetChatByPublicKeyID(int
keyID)

Method - returns Chat Get a chat by its public key ID.

AddChat(Chat chat) Method Add a new chat to the database.

GetChatInviteByID(int
chatInviteID)

Method - returns ChatInvite Get a chat invite by its ID.

GetChatInvitesByRecipientID(
int recipientID)

Method - returns ChatInvite[] Get a list of chat invites by
their recipientID.

GetChatInvitesBySenderID(int
senderID)

Method - returns ChatInvite[] Get a list of chat invites by
their senderID.

DeleteChatInvite(int
chatInviteID)

Method Delete a chat invite from the
database.

AddChatInvite(ChatInvite ci) Method Add a new chat invite to the
database.

MessageQueue

ChatID Integer attribute The ID of the chat this message

53

queue is linked to.

data Queue attribute The queue structure which
stores the messages in this
chat.

Push(Message msg) Method Pushes a new message to the
queue.

Pop() Method - returns Message Pops a message from the queue
and returns the value that was
popped.

Get(int i) Method - returns Message Gets an item from the queue at
index i.

MessageStore

data HashMap<Integer,
MessageQueue> attribute

Hash table which stores all the
message queues, where the key
is the ID of the chat they are
linked to.

ReadFromFile() Method - returns
HashMap<Integer,
MessageQueue>

Attempts to read the hash table
from the data file.

WriteToFile() Method Attempts to write the hash
table to the data file.

GetMessageQueue(int id) Method - returns
MessageQueue

Gets the MessageQueue linked
to the key given as the
argument of this method.

AddMessageQueue(MessageQ
ueue queue)

Method - returns Result Adds a new MessageQueue to
the hash table.

RemoveMessageQueue(int id) Method - returns Result Removes the MessageQueue
with the key given as an
argument of this method.

KeyStore

data HashMap<Integer, KeyPair>
attribute

Hash table which stores all of
the key pairs, linked to an ID.

dataFile File attribute The file which contains the
pre-existing data for this hash
table.

ReadFromFile() Method - returns
HashMap<Integer, KeyPair>

Attempts to read the hash table
from dataFile.

WriteToFile() Method Attempts to write the contents

54

of the hash table to dataFile.

GetKeyPair(int keyID) Method - returns KeyPair Gets the KeyPair with ID
keyID from the hash table.

AddKeyPair(KeyPair pair) Method - returns Result Adds a new KeyPair to the
hash table.

RemoveKeyPair(int keyID) Method - returns Result Removes a KeyPair from the
hash table at ID keyID.

ExpirationManager extends Thread

db Database attribute Stores a reference to the active
Database object.

maxTimeElapsed Long attribute The maximum amount of time
that can elapse for any given
request.

run() Method Overrides Thread.run, executes
in a separate process from the
rest of the application.

Database

mySQLHandler MySQLHandler attribute Reference to the
MySQLHandler instance.

keyStore KeyStore attribute Reference to the KeyStore
instance.

messageStore MessageStore attribute Reference to the MessageStore
instance.

expirationManager ExpirationManager attribute Reference to the
ExpirationManager instance.

SaveKeyAndMessageStore() Method Manually saves the KeyStore
and MessageStore instances to
their respective data files.

Wrapper implementations of
methods that are defined in
MySQLHandler, KeyStore, and
MessageStore

Methods - various return types Methods which call other
methods, so this class kind of
acts as a sort of switchboard to
the other database systems.

com.nathcat.messagecat_database_entities

User

userID Integer attribute ID of the user.

55

username String attribute The user’s username.

password String attribute The user’s password.

displayName String attribute The user’s display name.

dateCreated String attribute The date this user was created.

profilePicturePath String attribute The path of this user’s profile
picture.

Chat

ChatID Integer attribute The ID of this chat.

Name String attribute The name of this chat.

Description String attribute The description of this chat.

PublicKeyID Integer attribute The ID of the public key used
to encrypt this chat.

ChatInvite

ChatInviteID Integer attribute The ID of this chat invite.

ChatID Integer attribute The ID this chat invite is linked
to.

SenderID Integer attribute The ID of the user that sent this
invite.

RecipientID Integer attribute The ID of the user that should
receive this invite.

TimeSent Long attribute The time this invite was sent.

PrivateKeyID Integer attribute The ID of the private key used
to decrypt messages in this
chat.

FriendRequest

FriendRequestID Integer attribute The ID of this friend request.

SenderID Integer attribute The ID of the user that sent this
friend request.

RecipientID Integer attribute The ID of the user that is to
receive this request.

TimeSent Long attribute The time this request was sent.

56

Friendship

FriendshipID Integer attribute The ID of this friendship.

UserID Integer attribute The ID of the user.

FriendID Integer attribute The ID of the friend.

DateEstablished String attribute The date this friendship was
created.

Message

SenderID Integer attribute The ID of the user that sent this
message.

ChatID Integer attribute The ID of the chat this message
was sent to.

TimeSent Long attribute The time this message was
sent.

Content Object attribute The encrypted content of this
message.

com.nathcat.messagecat_server

Queue

startNode Node attribute The start node of the internal
linked list.

maxLength Integer attribute The maximum length of this
queue.

length Integer attribute The current length of this
queue.

Push(Object data) Method Push a new object to the queue.

Pop() Method - returns Object Pop an object off the queue.

Get(int i) Method - returns Object Get the object at index i from
the queue.

Queue.Node

data Object attribute The data stored at this node.

nextNode Node attribute The next node in the list.

57

QueueManager extends Thread

server Server attribute Stores a reference to the
currently active server.

queue Queue attribute The queue this manager should
manage.

pool Handler[] attribute The Handler pool assigned to
this manager.

run() Method Override from Thread.run,
executes in a different process.

RequestType (enum)

Authenticate

GetUser

GetFriendship

GetFriendRequests

GetChat

GetChatInvite

GetPublicKey

GetMessageQueue

AddUser

AddChat

AddListenRule

RemoveListenRule

AcceptFriendRequest

DeclineFriendRequest

AcceptChatInvite

DeclineChatInvite

SendMessage

SendFriendRequest

SendChatInvite

58

ListenRule

id Integer attribute The ID of this listen rule.

connectionHandlerID Integer attribute The ID of the connection
handler that created this listen
rule.

handler ConnectionHandler attribute A reference to the connection
handler that created this listen
rule.

listenForType RequestType attribute The request type this rule
listens for.

fieldToMatch Field attribute The request field that should be
checked.

objectToMatch Object attribute The object that should be used
to compare against the field. If
the field matches this object,
the rule is triggered.

objectsToMatch Object[] attribute Multiple objects which should
be compared against the field.
If any of these objects match
the field, this rule is triggered.

getID() Method - returns Integer Get the ID of this listen rule.

setID(int id) Method Set the ID of this listen rule.
Only allows the ID to be set
once.

CheckRequest(RequestType
type, Object data)

Method - returns boolean Checks if certain data triggers
this listen rule.

Handler

socket Socket attribute The main TCP/IP socket for
communications with the
client.

oos ObjectOutputStream attribute The main output stream.

ois ObjectInputStream attribute The main input stream.

threadNum Integer attribute The number assigned to this
thread when it was created,
used for debugging.

className String attribute The name of this class, again,
used for debugging.

59

keyPair KeyPair attribute The KeyPair used to send
encrypted messages to the
client.

clientKeyPair KeyPair attribute The KeyPair used to receive
encrypted messages from the
client.

busy Boolean attribute Tells the rest of the program if
this handler is busy or not.

server Server attribute Stores a reference to the
currently active server.

queueObject Object The object passed to this
handler by the QueueManager.

authenticated Boolean attribute Tells the rest of the program if
the client connected to this
handler has authenticated their
connection or not.

lrSocket Socket attribute The listen rule communication
socket.

lrOos ObjectOutputStream attribute The listen rule communication
stream.

InitialiseIO() Method Initialise input / output
operations on the main socket.

StopHandler() Method Stop the handler process.

DebugLog(String message) Method Print a message to the console,
giving a unique identifier for
this process.

Send(Object obj) Method Send an object to the client.

LrSend(Object obj) Method Send an object to the client
over the listen rule socket.

Receive() Method - returns Object Receive an object from the
client.

Close() Method Close the connection to the
client.

ConnectionHandler extends Handler

request JSONObject request The request which is currently
being processed.

run() Method Overrides from Thread.run,
this method executes in a

60

different process, hence this
conducts the main operation of
the handler.

DoHandshake() Method - returns boolean Attempts to complete the
handshake process with the
client, key pairs are exchanged
and the listen rule socket is
created. Returns a boolean
describing the success state of
this process.

Mainloop() Method Main process for this handler,
waits for a request to be
received and passes this to the
handle request method and
returns the result to the client.

HandleRequest() Method - returns Object Determines the correct method
to handle a request and returns
the result of that method.

Authenticate() Method - returns Object Authenticate the connection
with the given user data.
Return the full data of the user
if successful, or the string
“failed”.

GetUser() Method - returns Object. Get a user from the database
with the given data.

GetFriendship() Method - returns Object Get a friendship with the given
data.

GetFriendRequests() Method - returns Object Get friend requests with the
given data.

GetChat() Method - returns Object Get a chat with the given data.

GetChatInvite() Method - returns Object Get a chat invite with the given
data.

GetPublicKey() Method - returns Object Get a public key with the given
data.

GetMessageQueue() Method - returns Object Get a message queue with the
given data.

AddUser() Method - returns Object Add a new user to the database
and return the full data of the
new user.

AddChat() Method - returns Object Add a new chat to the database
and return the full data of the
new chat.

61

AddListenRule() Method - returns Object Add a new listen rule and
return its ID.

RemoveListenRule() Method - returns Object Remove a listen rule given its
ID.

AcceptFriendRequest() Method - returns Object Accept a friend request. This
will remove the friend request
from the database and add two
new friendship records.

DeclineFriendRequest() Method - returns Object Deletes a friend request from
the database.

AcceptChatInvite() Method - returns Object Deletes a chat invite from the
database and returns the private
key for that chat.

DeclineChatInvite() Method - returns Object Deletes a chat invite from the
database.

SendMessage() Method - returns Object Add a message to the relevant
message queue.

SendFriendRequest() Method - returns Object Add a friend request to the
database.

SendChatInvite() Method - returns Object Add a chat invite to the
database and the chat’s private
key.

Server

port Integer attribute The port the server will receive
connections on.

maxThreadCount Integer attribute The maximum number of
handlers allowed to run.

connectionHandlerPool Handler[] attribute The pool of connection
handlers.

connectionHandlerQueueMana
ger

QueueManager attribute The QueueManager for the
connection handlers.

db Database attribute The active instance of the
database.

listenRules ArrayList<ListenRule>
attribute

A list of active listen rules.

main(String[] args) Method The main method. Sets up the
server and accepts connections.

GetConfigFile() Method - returns JSONObject Gets the contents of the server

62

config file.

DebugLog(String message) Method Prints a message to the console
with identifier “Server”.

com.nathcat.messagecat_client

AutoStartService extends BroadcastReceiver

onReceive(Context context,
Intent intent)

Method Executes when the application
is started, starts the networker
service.

LoadingActivity

networkerServiceConnection ServiceConnection attribute Used to bind to the networker
service.

networkerService NetworkerService attribute Stores a reference to the
networker service instance.

bound Boolean attribute Tells the rest of the program
whether or not this activity is
bound to the service.

onCreate(Bundle
savedInstanceState)

Method Called when the activity is
created.

isServiceRunning() Method - returns boolean Determines if the networker
service is currently running or
not.

NewUserActivity

networkerServiceConnection ServiceConnection attribute Used to bind to the networker
service.

networkerService NetworkerService attribute Stores a reference to the
networker service instance.

bound Boolean attribute Tells the rest of the program
whether or not this activity is
bound to the service.

displayNameEntry EditText attribute Reference to the entry box for
the new user’s display name.

phoneNumberEntry EditText attribute Reference to the entry box for
the new user’s phone number,
which will be used as their
username.

63

loadingWheel ProgressBar attribute Reference to the loading wheel
widget which will be displayed
while the page sends the
request.

passwordEntry EditText attribute Reference to the entry box for
the new user’s password.

passwordRetypeEntry EditText attribute Reference to the entry box for
the new user’s password
retype.

phoneNumber String attribute Stores the user’s phone number
as found by the application.

digest MessageDigest attribute Used for password hashing,
stores a reference to the
SHA-256 algorithm.

onCreate(Bundle
savedInstanceState)

Method Called when the activity is first
created.

OnSubmitButtonClicked(View
v)

Method Called when the submit button
is clicked, checks that the data
entered is valid and then sends
a request to the server to create
a new user.

NetworkerService extends Service

notificationChannel NotificationChannel attribute Stores a reference to the
notification channel object
used to give notifications about
events within the application.

serviceStatusChannel NotificationChannel attribute Stores a reference to the
notification channel for the
service status notification.

connectionHandler ConnectionHandler attribute Stores a reference to the active
connection handler.

connectionHandlerLooper Looper attribute The handler looper to use with
the connection handler process.

authenticated Boolean attribute Tells the rest of the program if
the connection is authenticated
or not.

waitingForResponse Boolean attribute Tells the rest of the program if
the service is currently waiting
for a response from the server.

binder NetworkerServiceBinder Used to allow the client

64

attribute application to bind to the
service.

bound Boolean attribute Identifies whether or not the
service is currently bound to
the main application.

user User attribute The user that is currently
authenticated on this
connection.

activeChatID Integer attribute The ID of the chat that is
currently open in the
application, used to filter out
notifications from messages
sent in this chat.

onBind(Intent intent) Method - returns IBinder Called when a process binds to
this service.

onUnbind(Intent intent) Method Called when a process unbinds
from this service.

onCreate() Method Called when the service is first
created.

onStartCommand(Intent intent,
int flags, int startID)

Method - returns integer Called when the service is
commanded to start. The return
value determines the behaviour
of the service when it is closed.
We will return the value of the
constant START_STICKY,
which means that the service
should restart if it is closed.

SendRequest(Request request) Method Passes a request object to the
connection handler to be sent
to the server.

onDestroy() Method Called when the service is
destroyed, should stop the
connection handler.

startConnectionHandler() Method Start the connection handler
and initialise the connection to
the server and attempt to
authenticate.

ConnectionHandler extends Handler

s Socket attribute The TCP/IP socket used to
communicate with the server.

oos ObjectOutputStream attribute The output stream for the main

65

socket.

ois ObjectInputStream attribute The input stream of the main
socket.

keyPair KeyPair attribute The key pair generated by this
client to communicate with the
server.

serverKeyPair KeyPair attribute The key pair generated by the
server.

context Context attribute The application context.

connectionHandlerID Integer attribute The ID of the connection
handler that has taken this
connection.

callbackHandler ListenRuleCallbackHandler
attribute

The listen rule callback handler
thread which handles all
callbacks from listen rules
added registered by this client.

listenRules ArrayList<ListenRuleRecord>
attribute

Stores listen rules that have
been created by this client.

Send(Object obj) Method Send an object to the server.

Receive() Method - returns Object Receive an object from the
server.

handleMessage(Message msg) Method Handle a message sent to this
handler by the Android
Handler IPC protocol. A value
message of 0 tells the handler
to initialise a new connection,
1 tells the handler to send a
request to the server, and 2 tells
the handler to close the current
connection.

ListenRuleCallbackHandler extends Thread

connectionHandler ConnectionHandler attribute The ConnectionHandler
instance which created this
process.

s Socket attribute The TCP/IP socket used to
communicate with the server.

oos ObjectOutputStream attribute The object output stream

ois ObjectInputStream attribute The object input stream

keyPair KeyPair attribute The client’s key pair

66

serverKeyPair KeyPair attribute The server’s key pair

port Int attribute The port assigned by the
server.

Send(Object obj) Method Sends an object through the
connected socket.

Receive() Method - returns Object Receives an object through the
connected socket.

run() Method Overrides from parent class
Thread, executes in a different
thread. Handles the main
process of the listen rule
callback handler.

MainActivity

connection ServiceConnection attribute Used to bind to the networker
service.

networkerService NetworkerService attribute Stores a reference to the
networker service instance
when bound.

searchResults User[] attribute Stores the results of a search on
the find users page.

friends User[] attribute Array of friends, displayed on
the friends page.

invitationsFragment InvitationsFragment attribute Stores a reference to the active
invitations fragment.

invitationFragments InvitationFragment[] attribute An array of invitations
represented as fragments
within the invitations fragment
page.

users HashMap<Integer, User>
attribute

Effectively a cache of users so
the app doesn’t have to request
a user by their ID for every
message when displaying
messages on the messaging
fragment page.

messagingFragment MessagingFragment attribute Stores a reference to the
currently active messaging
fragment.

chatFragments ArrayList<ChatFragment> A list of chats displayed as
fragments on the chats page.

67

onCreate(Bundle
savedInstanceState)

Method Called when this activity is
created.

onSearchButtonClicked(View
v)

Method Called when the user searches
for a display name on the find
users page. Sends a request to
the server and then displays the
result.

onAddFriendButtonClicked(Vi
ew v)

Method Called when the user sends
another user a friend request
from the find users page.

onInviteToChatClicked(View
v)

Method Called when the user wants to
send a friend an invite to a
chat.

onChatClicked(View v) Method Called when a user clicks on a
chat on the chats page.

onAcceptInviteClicked(View
v)

Method Called when a user accepts an
invite.

onDeclineInviteClicked(View
v)

Method Called when a user declines an
invite.

SendMessage(View v) Method Called when a user sends a
message on the messaging
page.

Other…

All other classes are either small storage classes that have no functional value other than
encapsulation, or are very simple / similar to other classes so I have not included them here for the
sake of saving space on this document.

Such classes are listed below.

● ListenRuleRecord
○ Acts as a storage class for information data about registered listen rules.

● Request
○ Used as a storage class to encapsulate data required for a network request.

● ListenRuleRequest
○ Extends Request
○ Same purpose as the Request class but specifically for network requests involving

listen rules.
● All fragment classes.

68

Testing

RSA
Testing the RSA Asymmetric encryption system is imperative, since it will be used when transferring
any data over an active connection. It will be required to encrypt Java objects, so we should attempt to
supply each of the database entity classes to it with data supplied to them, and attempt to encrypt an
RSA key pair, while this may seem odd it will be required by the application and is likely the largest
data object that will have to be passed through this system, so it is very important that we test that the
system can handle this kind of encryption.

Data Expected outcome from sequential encrypt
then decrypt

User class An identical class

Friendship class An identical class

Friend request class An identical class

Chat invite class An identical class

Chat class An identical class

Message class An identical class

KeyPair class An identical class

Database
The database will be tested by supplying data to the database through implemented methods, and then
trying to retrieve that data, also through implemented methods. There will be a lot of these methods,
since there are a significant number of database functions.

TheMySQLHandler class will be tested using the following data. For methods that add data to the
database we will verify that the data has been correctly added by performing a select statement
directly on the SQL database.

AddUser()

Data Expected outcome from select statement

Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName:
Nathcat
DateCreated:
25/07/2022
ProfilePicturePath: default.png

Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName:
Nathcat
DateCreated:
25/07/2022
ProfilePicturePath: default.png

69

Username: OtherPhoneNumber
Password: HelloWorld123456
DisplayName:
Herman
DateCreated:
25/07/2022
ProfilePicturePath: default.png

Username: OtherPhoneNumber
Password: HelloWorld123456
DisplayName:
Herman
DateCreated:
25/07/2022
ProfilePicturePath: default.png

AddFriendship()

Data Expected outcome from select statement

UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

UserID: 2
FriendID: 1
DateEstablished: 25/07/2022

FriendshipID: 2
UserID: 2
FriendID: 1
DateEstablished: 25/07/2022

AddFriendRequest()

Data Expected outcome from select statement

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659277170486

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent:

FriendRequestID: 1
SenderID: 2
RecipientID: 1
TimeSent: 1659277170486

FriendRequestID: 1
SenderID: 2
RecipientID: 1
TimeSent:

AddChat()

Data Expected outcome from select statement

ChatID: 1
Name: “test1”
Description: “test1-description”
PublicKeyID: 1

ChatID: 1
Name: “test1”
Description: “test1-description”
PublicKeyID: 1

70

ChatID: 2
Name: “test2”
Description: “test2-description”
PublicKeyID: 2

ChatID: 2
Name: “test2”
Description: “test2-description”
PublicKeyID: 2

AddChatInvite()

Data Expected outcome from select statement

ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1

ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

GetUser()

Data Expected outcome

UserID: 1 UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

Username: MyPhoneNumber UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

DisplayName: Nathcat UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

71

UserID: 3 null

Username: aiwdwid null

DisplayName: Nat UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

GetFriendship()

Data Expected outcome

FriendshipID: 1 FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

UserID: 1 FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

UserID: 1
FriendID: 2

FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

FriendshipID: 3 null

UserID: 3 “”

UserID: 2
FriendID: 1

FriendshipID: 2
UserID: 2
FriendID: 1
DateEstablished: 25/07/2022

GetFriendRequests()

Data Expected outcome

SenderID: 1 FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659278362305

72

RecipientID: 1 FriendRequestID: 2
SenderID: 2
RecipientID: 1
TimeSent: 1659278362305

SenderID: 3 “”

RecipientID: 3 “”

GetChat()

Data Expected outcome

ChatID: 1 ChatID: 1
Name: test1
Description: test1-description
PublicKeyID: 1

ChatID: 2 ChatID: 2
Name: test2
Description: test2-description
PublicKeyID: 2

ChatID: 3 null

GetChatInvite()

Data Expected outcome

ChatInviteID: 1 ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1

ChatInviteID: 3 null

RecipientID: 2 ChatInviteID: 1
ChatID: 1

73

SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1,

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

RecipientID: 3 null

SenderID: 1 ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1,

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

SenderID: 3 null

Server
The server will be tested using a test program which supplies fabricated data, to ensure that this data is
processed as expected. Most of the server’s functions simply employ database functionality, which
will have been tested before we reach this stage, so we simply need to test that the server takes the
requests and directs them to the correct processing method.

Request Type Test outline

Authenticate We will supply different sets of user data, one
which is correct and should be authenticated, and
others which are incorrect (either do not exist in
the database or include invalid data for a certain
field), and observe the action the program takes
based on this input.

GetUser We will again supply different sets of user data,
with individual fields filled out as per the
selector options for this request type, those
selector options being:

● ID
● Username
● DisplayName

74

Also, in order to protect the privacy of users, the
password field will be made blank before the
results are passed back to the client application,
so we should make sure that this is done
correctly.

GetFriendship Supply different sets of friendship data,
according to the selector options for this request:

● ID
● UserID
● UserID and FriendID

GetFriendRequests Supply different sets of friend request data,
according to the selectors for this request type:

● ID
● SenderID
● RecipientID

GetChat Supply different sets of chat data, according to
the selectors for this request type:

● ID
● PublicKeyID

GetChatInvites Supply different sets of chat invite data,
according to the selectors for this request type:

● ID
● RecipientID

GetPublicKey Supply different public key IDs to the server and
check what it returns, if the ID is linked to a
public key which exists in the key store it should
return that key, but if it does not exist it should
return null.

GetMessageQueue Supply different chat IDs to the server and check
what it returns, if the ID is linked to a queue
which exists in the message store it should return
that queue, but if it does not exist it should return
null.

AddUser Create some user data to add to the server and
then check the SQL database to see if the data
has been entered correctly.

AddChat Create some chat data to add to the server and
then check the SQL database to see if the data
has been entered correctly.

AddListenRule Register a listen rule with the server and then
perform the action which triggers this listen rule

75

to check that it is triggered and handled correctly,
and also perform actions that should not trigger it
to see how that is handled by the server, these
should be requests of the same type that do not
have a field match, and requests of different
types.

RemoveListenRule Remove the registered listen rule and perform the
action which should trigger it and watch how the
server handles this.

AcceptFriendRequest After adding a friend request to the server,
attempt to accept it, and check the SQL database
afterwards to see if the request acceptance is
handled correctly. The server should create 2
new friendship records.

DeclineFriendRequest The server should simply delete the friend
request and make no other changes to the
database.

AcceptChatInvite After adding a chat invite to the server, attempt
to accept it, and check that the server responds
with the private key sent with the chat invite.

DeclineChatInvite The server should delete the invite record in the
database and also delete the private key from the
key store.

SendMessage Send a message to the server and check the
relevant message queue for the message. Also try
a variety of characters to see how it handles this
variety.

SendFriendRequest Send a friend request and check that it is added
to the database correctly.

SendChatInvite Send a chat invite and check that it is added to
the SQL database correctly, and that the private
key is added to the key store under the hash code
of the key.

Client application
Each part / page of the client application will have its functionality tested once it has been
implemented, although there are some pages which rely on other pages being functional before they
can have their full functionality implemented, for example the ChatsFragment page, which is the page
theMainActivity starts on cannot implement the change to the ChatFragment page before we have
implemented ChatFragment, which will likely be the last thing we implement. In this specific case we
can write a function which writes a message to the console when it would open a chat, perhaps
outputting the information of the chat that is to be opened.

76

Page Test Expected outcome

LoadingActivity Do nothing, allow the
application to set itself up.
Perform when there is a user
account on the device and
when there is not a user
account on the device.

When there is a user account,
this activity should start the
networker service and load the
MainActivity. When there is
not a user account, the activity
should start the networker
service and load the
NewUserActivity.

NewUserActivity Enter data into the fields and
click submit.

This data should contain a
variety of characters, some
which are included in only
ASCII text and some which are
only included in Unicode text.

The application should submit
the new user request, create a
new user on the server, then
reload the LoadingActivity,
which attempts to authenticate
the new user and then load the
MainActivity. The application
should not be phased by the
variance of characters.

MainActivity Attempt to open the drawer
menu and navigate to each of
the sub pages through this
menu by clicking on the
relevant buttons.

The application should change
the page to the page which was
clicked, for example if the find
users button was clicked, it
should open the
FindUsersFragment.

ChatsFragment Click on the chats in the
window.

The application should open
the ChatFragment for this chat.

Or, it should output a message
to the console containing
information about the chat that
was clicked, if the
ChatFragment has not been
implemented by this point.

FriendsFragment Click on the invite to chat
button on a friend displayed in
the window.

The application should load the
InviteToChatActivity.

InvitationsFragment Click on both the accept invite
button and decline invite
button for different invites.

The application should perform
the relevant action, if the
accept button is clicked it
should request that the server
accept the invite, and if the
decline button is clicked it
should request that the server
declines this invite.

FindUserFragment Attempt to search for a user
which exists in the database,
using variations in the length

The application should not
show any results for users
which do not exist, and should

77

of the name. Also use a variety
of characters. Also search for
users which do not exist.

show results for users which do
exist, regardless of how
complete their name is.

InviteToChatActivity Test both inviting a user to an
existing chat and creating a
new chat which the user is then
invited to.

Use a variety of characters in
the fields for information about
the new chat.

The application should send a
chat invite to the user that was
clicked, it should also create a
new chat if this is required.

MessagingFragment Try sending messages to chats
using a variety of characters.
Also try receiving messages.

The application should not be
phased by the variety of
characters and the entered
characters should appear as
they were entered on the other
client devices. The page should
not be refreshed unless a new
message is received. The
correct user display name
should also be shown on each
message.

Notifications Try performing the actions
which should cause a
notification to be shown on
other devices

The application should show
the required notifications for
the given context and action,
which will be detailed more
specifically in the actual tests
later on.

End-user testing
This stage of testing will test the entire application’s function as a single unit, rather than testing the
individual components, black box testing, as it is more formally named. In order to perform such
testing I will gather a number of people (including the original stakeholder) and install the application
on their devices and ask that they use it for a period of time, and provide feedback on it through a
questionnaire which specifically targets the success criteria and requirements of the application, which
will allow us to evaluate the extent to which they were met in the final product.

Following is the questionnaire which I will give to testers.

1. What was your experience of the actual messaging system? I.e. did you find it easy to use,
was it simple to look at, was there too much information displayed, not enough information
displayed?

2. What was your experience of the contact management system? (the ability to see your friend’s
list, send friend and chat invites, and manage invitations you have received from others).

3. How did you find the performance of the application, was it fast, slow, did it crash a lot?
4. How easy was the application to use, were there any areas where you felt that usability could

be improved?

78

5. How secure do you feel your data is when using this application? Do you think the application
should be more transparent about how it stores your data and why it requires that data?

6. Do you feel that there were any missing features that you expected to be in an application like
this?

7. Any other comments?

This questionnaire covers the success criteria and requirements laid out earlier in the analysis stage,
and also requests any other information or suggestions on how the application could be improved.
There is also a question specifically targeting the usability of the application, asking testers how the
application’s usability could be improved or what is already good about it.

This will allow us to assess how well the product at the end of the development cycle meets the
success criteria and requirements, and how we may improve the application in future development /
maintenance.

Privacy policy
Given that this application collects sensitive user data, I should create a privacy policy to ensure
transparency about the way the data is stored. This privacy policy could be hosted on the same device
as the server, although operating on a different web server program. Creating another website in this
way could also offer other benefits since we could create a further website to promote the application
and potentially provide information on how to use the application, although this may be a future
development goal.

In any case, here is an example of a privacy policy statement I could use.

MessageCat, and its developer “Nathcat”, collects the following sensitive information about its data
subjects / users:

● Phone number
○ Used as a unique identifier to facilitate authentication of users when connecting to

the application.
○ May also be used in other future MessageCat application variations to simplify the

process of authentication in these applications, but these do not exist and hence this
point is not applicable at this time.

○ This information is stored on the MessageCat server and is not made available to
access through the application, and is not sold to third parties. Client connections
must also be authenticated with their own information in order to request data about
other users.

● Password
○ This is also used to authenticate users. It acts as a phrase only the user that created it

knows to protect against other people accessing their account.
○ This information is stored on the MessageCat server and is not shared with any third

parties, and is stored using a SHA-256 hash of the password they originally entered.

Other information which is gathered by the application but may not be specifically regarded as
sensitive is the “display name”, the name displayed to other users of the application. This information
is available to view through the application.

79

Please contact the email address below with any queries should you have any, and also to request that
your data be deleted. Under the data protection act you have the right to request that we delete your
data and we will comply with this request should that be your intention.

Contact information will also be displayed at the end of the document to allow users to send queries to
the development team to get a better understanding of how their data is being handled. Users will also
be able to request that their data be deleted through this system. In the future I should provide a way
for users to do this through the application but for now this will suffice.

Development timeline
Given the proposed functionality of different parts of this application there is a clear order in which
we should implement this project. We should implement the application piece by piece, ensuring that
the system we are implementing does not require other features to function properly. Given this rule
set, we could have the following development timeline.

1. Database entities
a. User
b. Friendship
c. FriendRequest
d. ChatInvite
e. Chat
f. Message

2. RSA CryptoSystem
a. PublicKey & Private Key
b. EncryptedObject
c. KeyPair
d. RSA (includes key pair generation methods)

3. Database
a. MySQLHandler
b. KeyStore
c. Queue
d. MessageQueue
e. MessageStore
f. Database
g. ExpirationManager

4. Server
a. ListenRule
b. Handler
c. ConnectionHandler (server)
d. QueueManager
e. Server
f. Server main method

5. Client application
a. ConnectionHandler (client)
b. NetworkerService
c. AutoStartService

80

d. LoadingActivity
e. NewUserActivity
f. MainActivity (developed progressively with sub-pages)
g. ChatsFragment
h. FriendsFragment
i. FindUserFragment
j. InvitationsFragment
k. InviteToChatActivity
l. MessagingFragment

Implementation

Database entities
These are classes which represent records from the database, so that we can access this data through
native Java means, rather than an object from a library. This also provides a layer of abstraction to the
final code which will make it easier to use and more maintainable.

This section does not require testing since it does not offer any functionality per say, only implements
a few data classes.

This part of the application will be contained within a package called
com.nathcat.messagecat_database_entities.

User
package com.nathcat.messagecat_database_entities;

import java.io.Serializable;

/**

* Represents a User from the database

*/

public class User implements Serializable {

public final int UserID;

public final String Username;

public final String Password;

public final String DisplayName;

public final String DateCreated;

public final String ProfilePicturePath;

public User(int userID, String username, String password, String displayName, String dateCreated, String

profilePicturePath) {

UserID = userID;

Username = username;

Password = password;

DisplayName = displayName;

DateCreated = dateCreated;

ProfilePicturePath = profilePicturePath;

}

81

@Override

public String toString() {

return "User{" +

"UserID=" + UserID +

", Username='" + Username + '\'' +

", Password='" + Password + '\'' +

", DisplayName='" + DisplayName + '\'' +

", DateCreated='" + DateCreated + '\'' +

", ProfilePicturePath='" + ProfilePicturePath + '\'' +

'}';

}

}

Friendship
package com.nathcat.messagecat_database_entities;

import java.io.Serializable;

/**

* Represents a friendship from the database.

*/

public class Friendship implements Serializable {

public final int FriendshipID;

public final int UserID;

public final int FriendID;

public final String DateEstablished;

public Friendship(int friendshipID, int userID, int friendID, String dateEstablished) {

FriendshipID = friendshipID;

UserID = userID;

FriendID = friendID;

DateEstablished = dateEstablished;

}

@Override

public String toString() {

return "Friendship{" +

"FriendshipID=" + FriendshipID +

", UserID=" + UserID +

", FriendID=" + FriendID +

", DateEstablished='" + DateEstablished + '\'' +

'}';

}

}

FriendRequest
package com.nathcat.messagecat_database_entities;

import java.io.Serializable;

/**

* Represents a friend request from the database.

82

*/

public class FriendRequest implements Serializable {

public final int FriendRequestID;

public final int SenderID;

public final int RecipientID;

public final long TimeSent;

public FriendRequest(int friendRequestID, int senderID, int recipientID, long timeSent) {

FriendRequestID = friendRequestID;

SenderID = senderID;

RecipientID = recipientID;

TimeSent = timeSent;

}

@Override

public String toString() {

return "FriendRequest{" +

"FriendRequestID=" + FriendRequestID +

", SenderID=" + SenderID +

", RecipientID=" + RecipientID +

", TimeSent=" + TimeSent +

'}';

}

}

ChatInvite
package com.nathcat.messagecat_database_entities;

import java.io.Serializable;

/**

* Represents a chat invite from the database.

*/

public class ChatInvite implements Serializable {

public final int ChatInviteID;

public final int ChatID;

public final int SenderID;

public final int RecipientID;

public final long TimeSent;

public final int PrivateKeyID;

public ChatInvite(int chatInviteID, int chatID, int senderID, int recipientID, long timeSent, int privateKeyID) {

ChatInviteID = chatInviteID;

ChatID = chatID;

SenderID = senderID;

RecipientID = recipientID;

TimeSent = timeSent;

PrivateKeyID = privateKeyID;

}

@Override

public String toString() {

return "ChatInvite{" +

"ChatInviteID=" + ChatInviteID +

83

", ChatID=" + ChatID +

", SenderID=" + SenderID +

", RecipientID=" + RecipientID +

", TimeSent=" + TimeSent +

", PrivateKeyID=" + PrivateKeyID +

'}';

}

}

Chat
package com.nathcat.messagecat_database_entities;

import java.io.Serializable;

/**

* Represents a chat from the database.

*/

public class Chat implements Serializable {

public final int ChatID;

public final String Name;

public final String Description;

public final int PublicKeyID;

public Chat(int chatID, String name, String description, int publicKeyID) {

ChatID = chatID;

Name = name;

Description = description;

PublicKeyID = publicKeyID;

}

@Override

public String toString() {

return "Chat{" +

"ChatID=" + ChatID +

", Name='" + Name + '\'' +

", Description='" + Description + '\'' +

", PublicKeyID=" + PublicKeyID +

'}';

}

}

Message
package com.nathcat.messagecat_database_entities;

import org.json.simple.JSONObject;

import java.io.Serializable;

/**

* Represents a message from the database.

*/

public class Message implements Serializable {

84

public final int SenderID;

public final int ChatID;

public final long TimeSent;

public final Object Content;

public Message(int senderID, int chatID, long timeSent, Object content) {

SenderID = senderID;

ChatID = chatID;

TimeSent = timeSent;

Content = content;

}

@Override

public String toString() {

return "Message{" +

"SenderID=" + SenderID +

", ChatID=" + ChatID +

", TimeSent=" + TimeSent +

", Content='" + Content + '\'' +

'}';

}

public JSONObject GetJSONObject() {

JSONObject json = new JSONObject();

json.put("SenderID", this.SenderID);

json.put("ChatID", this.ChatID);

json.put("TimeSent", this.TimeSent);

json.put("Content", this.Content);

return json;

}

}

RSA Asymmetric Encryption system
This part of the application will be contained within a package called com.nathcat.RSA, an
implementation of RSA asymmetric encryption as detailed in my design.

PublicKey
package com.nathcat.RSA;

import java.io.Serializable;

import java.math.BigInteger;

/**

* Contains data for an RSA encryption public key

*

* @author Nathan "Nathcat" Baines

*/

public class PublicKey implements Serializable {

public final BigInteger n;

public final BigInteger e;

85

public PublicKey(BigInteger n, BigInteger e) {

this.n = n;

this.e = e;

}

}

PrivateKey
package com.nathcat.RSA;

import java.io.Serializable;

import java.math.BigInteger;

/**

* Contains data for an RSA encryption private key

*

* @author Nathan "Nathcat" Baines

*/

public class PrivateKey implements Serializable {

public final BigInteger n;

public final BigInteger d;

public PrivateKey(BigInteger n, BigInteger d) {

this.n = n;

this.d = d;

}

}

EncryptedObject
package com.nathcat.RSA;

import java.io.*;

import java.math.BigInteger;

import java.util.ArrayList;

import java.util.Arrays;

public class EncryptedObject implements Serializable {

public final boolean flipSign; // Determine whether the sign should be flipped

public BigInteger object; // The object as a big integer

public EncryptedObject(boolean flipSign, BigInteger object) {

this.flipSign = flipSign;

this.object = object;

}

public EncryptedObject(Object object) {

BigInteger o = new BigInteger(SerializeObject(object));

if (o.compareTo(new BigInteger("0")) < 0) {

this.flipSign = o.compareTo(new BigInteger("0")) < 0;

86

this.object = o.abs();

}

else {

this.flipSign = false;

this.object = o;

}

}

public BigInteger GetInteger() {

if (this.flipSign) {

return this.object.multiply(new BigInteger("-1"));

}

else {

return this.object;

}

}

public BigInteger GetNaturalNumber() {

return this.object;

}

public Object GetObject() {

BigInteger o = this.GetInteger();

return DeserializeObject(o.toByteArray());

}

public static byte[] SerializeObject(Object obj) {

try {

ByteArrayOutputStream baos = new ByteArrayOutputStream();

ObjectOutputStream oos = new ObjectOutputStream(baos);

oos.writeObject(obj);

oos.flush();

byte[] objBytes = baos.toByteArray();

oos.close();

baos.close();

return objBytes;

} catch (IOException e) {

e.printStackTrace();

return null;

}

}

public static Object DeserializeObject(byte[] bytes) {

try {

ByteArrayInputStream baos = new ByteArrayInputStream(bytes);

ObjectInputStream ois = new ObjectInputStream(baos);

Object obj = ois.readObject();

ois.close();

baos.close();

return obj;

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

return null;

87

}

}

public static BigInteger[] ObjectToNumArray(Object obj) {

byte[] byteArray = EncryptedObject.SerializeObject(obj);

assert byteArray != null;

byte[] currentNum = new byte[256];

ArrayList<BigInteger> numArrayList = new ArrayList<>();

for (int i = 0; i < byteArray.length; i++) {

currentNum[i % 256] = byteArray[i];

if ((i + 1) % 256 == 0) {

numArrayList.add(new BigInteger(currentNum));

currentNum = new byte[256];

}

}

if (byteArray.length % 256 != 0) {

numArrayList.add(new BigInteger(currentNum));

}

Object[] arr = numArrayList.toArray();

BigInteger[] result = new BigInteger[arr.length];

for (int i = 0; i < arr.length; i++) {

result[i] = (BigInteger) arr[i];

}

return result;

}

public static Object NumArrayToObject(BigInteger[] arr) {

byte[] byteArray = new byte[arr.length * 256];

int byteCounter = 0;

for (BigInteger num : arr) {

byte[] currentNum = num.toByteArray();

for (int i = 0; i < currentNum.length; i++) {

byteArray[byteCounter] = currentNum[i];

byteCounter++;

}

}

return EncryptedObject.DeserializeObject(byteArray);

}

}

KeyPair
package com.nathcat.RSA;

import java.io.Serializable;

import java.math.BigInteger;

import java.util.Arrays;

/**

88

* Contains a pair of RSA encryption keys

*

* @author Nathan "Nathcat" Baines

*/

public class KeyPair implements Serializable {

public PublicKey pub = null;

public PrivateKey pri = null;

public KeyPair(PublicKey pub, PrivateKey pri) {

this.pub = pub;

this.pri = pri;

}

/**

* Give a string representation of this KeyPair

* @return string representation of this KeyPair

*/

public String toString() {

String result = "";

if (this.pub != null) {

result += "Public key----------\nn = " + this.pub.n.toString() + "\ne = " + this.pub.e.toString();

}

if (this.pub != null && this.pri != null) {

result += "\n\n";

}

if (this.pri != null) {

result += "Private Key-----\nn = " + this.pri.n.toString() + "\nd = " + this.pri.d.toString();

}

return result;

}

/**

* Encrypt a BigInteger array

* @param message The BigInteger array to encrypt

* @return Encrypted BigInteger array

* @deprecated Use object encryption methods instead

*/

public BigInteger[] encrypt(BigInteger[] message) throws PublicKeyException {

if (this.pub == null) {

throw new PublicKeyException();

}

BigInteger[] result = new BigInteger[message.length];

for (int i = 0; i < message.length; i++) {

result[i] = (message[i].modPow(this.pub.e, this.pub.n));

}

return result;

}

/**

* Decrypt a BigInteger array

89

* @param message The BigInteger array to decrypt

* @return The decrypted BigInteger array

* @deprecated Use object encryption methods instead

*/

public BigInteger[] decrypt(BigInteger[] message) throws PrivateKeyException {

if (this.pri == null) {

throw new PrivateKeyException();

}

BigInteger[] result = new BigInteger[message.length];

for (int i = 0; i < message.length; i++) {

result[i] = (message[i].modPow(this.pri.d, this.pri.n));

}

return result;

}

/**

* Encrypt an object

* @param message The object to encrypt

* @return The encrypted object

* @throws PublicKeyException Thrown if this pair has no public key

*/

public EncryptedObject encrypt(Object message) throws PublicKeyException {

if (this.pub == null) {

throw new PublicKeyException();

}

BigInteger cipherNum = new EncryptedObject(message)

.GetNaturalNumber()

.modPow(this.pub.e, this.pub.n);

return new EncryptedObject(new EncryptedObject(message).flipSign, cipherNum);

}

/**

* Decrypt an object

* @param message The object to decrypt

* @return The decrypted object

* @throws PrivateKeyException Thrown if this pair has no private key

*/

public Object decrypt(EncryptedObject message) throws PrivateKeyException {

if (this.pri == null) {

throw new PrivateKeyException();

}

BigInteger plain = message.GetNaturalNumber().modPow(this.pri.d, this.pri.n);

message.object = plain;

return message.GetObject();

}

/**

* Encrypt a large object.

* @param message The object to encrypt

* @return Array of encrypted objects

90

* @throws PublicKeyException Thrown if the public key on this object is null

*/

public EncryptedObject[] encryptBigObject(Object message) throws PublicKeyException {

if (this.pub == null) {

throw new PublicKeyException();

}

ObjectContainer container = new ObjectContainer(message);

BigInteger[] numArray = EncryptedObject.ObjectToNumArray(container);

EncryptedObject[] result = new EncryptedObject[numArray.length];

for (int i = 0; i < numArray.length; i++) {

result[i] = this.encrypt(numArray[i]);

}

return result;

}

/**

* Decrypt a large object

* @param message The array of encrypted objects you wish to decrypt

* @return The resulting object

* @throws PrivateKeyException Thrown if the private key on this object is null

*/

public Object decryptBigObject(EncryptedObject[] message) throws PrivateKeyException {

if (this.pri == null) {

throw new PrivateKeyException();

}

BigInteger[] numArray = new BigInteger[message.length];

for (int i = 0; i < message.length; i++) {

numArray[i] = (BigInteger) this.decrypt(message[i]);

}

return ((ObjectContainer) EncryptedObject.NumArrayToObject(numArray)).obj;

}

}

RSA
package com.nathcat.RSA;

import java.math.BigInteger;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

/**

* Methods for generating and using RSA asymmetric encryption keys.

*

* @author Nathan "Nathcat" Baines

*/

public class RSA {

/**

* Generate an RSA public key/private key pair.

* @return An RSA key pair

91

* @throws NoSuchAlgorithmException Thrown by crypto-secure generation of random integers

*/

public static KeyPair GenerateRSAKeyPair() throws NoSuchAlgorithmException {

// Generate two random 2048-bit prime numbers

BigInteger p = new BigInteger(2048, 1, new SecureRandom());

BigInteger q = new BigInteger(2048, 1, new SecureRandom());

// n = p * q

BigInteger n = p.multiply(q);

// Standard value for e (public key exponent) is 65537

BigInteger e = new BigInteger("65537");

// ed = 1 (mod (p - 1) * (q - 1)), d is the private key exponent

BigInteger d = e.modInverse(p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE)));

return new KeyPair(

new PublicKey(n, e),

new PrivateKey(n, d)

);

}

}

Testing

Data Expected outcome from
sequential encrypt then
decrypt

Actual outcome

User class An identical class StreamCorruptedException

Friendship class An identical class StreamCorruptedException

Friend request class An identical class StreamCorruptedException

Chat invite class An identical class StreamCorruptedException

Chat class An identical class StreamCorruptedException

Message class An identical class StreamCorruptedException

KeyPair class An identical class StreamCorruptedException

All of the tests I conducted resulted in a StreamCorruptedException, which is thrown whilst the
program attempts to decrypt an object. All of the bytes of the object are decrypted as normal,
following the mathematics, and the resulting array of bytes is serialised back into a regular Java
object using a byte stream wrapped in an object stream. This problem indicates that the object stream
failed to interpret the byte stream as an object, which means that the bytes in the array do not form a
Java object.

I first decided to test whether or not I could deserialise, and then serialise an object normally, without
putting it through the encryption process. This was successful and I obtained an identical object with
no errors, so clearly it is possible to handle objects in this way, which suggests that the decrypted byte
stream is not the same as the object’s original byte stream.

92

To verify this I outputted the byte array produced by serialisation, and then the byte array produced
after decryption, into the console to examine any differences. Here is a sample output which shows
the problem.

... 34, 62, 124, -78, 23, 0, 0, 0, 12, -43, 102 ...

... 34, 62, 124, -78, 23, 0, -43, 102, 123, 86 ...

As you can see, 2 bytes with a magnitude of 0 have been lost from the array, this is clearly the cause
of the stream corruption. The question now is why is this happening.

This took a while to work out, but I eventually noticed a pattern. Not all 0 bytes were being removed,
only the ones that occurred at each 64 byte boundary, by which I mean that if, 64 bytes into the
stream, there was a 0, that byte and any 0 bytes immediately following it were lost. In order to
perform the mathematical operations, the program creates an array of BigInteger objects, which are
part of the Java standard library, each of these objects is assigned 64 bytes, except for the last one
which may be assigned less if the number of bytes in the stream is not a multiple of 64. It cannot be a
coincidence that these zeros are being lost at an interval equivalent to the boundary of each
BigInteger. This leads me to believe that when the program passes a set of 64 bytes to the BigInteger
class constructor, it removes all the bytes that form leading zeros, which makes sense, but as a result
these zeros are lost in the final decrypted stream, leading to a corrupted stream.

So how do we fix this?

We could create another class called ByteChunk, which acts as a wrapper for the BigInteger, and
manages both the sign and lost bytes in the stream. This way the mathematics will not be broken by
negative integers, and no bytes will be lost from the final array.

I will also take this opportunity to improve the EncryptedObject class, which is not the most efficient
or maintainable in its current state. Now, rather than encrypting an object to an array of
EncryptedObjects, you will be able to encrypt to / decrypt from a single EncryptedObject, since it will
act as a wrapper for an array of ByteChunk objects, and provide utility methods to serialise and
deserialise objects into arrays of ByteChunks.

ByteChunk
package com.nathcat.RSA;

import java.math.BigInteger;

import java.util.Arrays;

/**

* Represents a chunk of 64 bytes

*/

public class ByteChunk {

private final byte[] lostBytes; // The lost bytes in the conversion from byte array to integer

public BigInteger integer; // The big integer created from the original bytes array

private final boolean flipSign; // Will the integer sign need to be changed?

93

public ByteChunk(byte[] bytes) {

this.integer = new BigInteger(bytes);

this.lostBytes = new byte[bytes.length];

if (bytes.length - this.integer.toByteArray().length >= 0)

System.arraycopy(bytes, 0, lostBytes, 0, bytes.length - this.integer.toByteArray().length);

if (this.integer.compareTo(BigInteger.ZERO) < 0) {

this.flipSign = true;

this.integer = this.integer.abs();

} else {

this.flipSign = false;

}

}

/**

* Create a from this chunk, taking into account the number of leading zeros in the original byte array

*

* @return The byte array

*/

public byte[] GetByteArray() {

// Flip the sign of the integer if required

if (this.flipSign) this.integer = this.integer.multiply(BigInteger.valueOf(-1));

return EncryptedObject.CombineByteArrays(this.lostBytes, this.integer.toByteArray());

}

public String toString() {

return Arrays.toString(this.GetByteArray());

}

}

EncryptedObject
package com.nathcat.RSA;

import java.io.*;

import java.math.BigInteger;

import java.util.ArrayList;

import java.util.Arrays;

public class EncryptedObject implements Serializable {

public final ByteChunk[] byteChunks; // The byte chunks of this encrypted object

public EncryptedObject(ByteChunk[] byteChunks) {

this.byteChunks = byteChunks;

}

/**

* Turn an object into an array of bytes

* @param obj The object to serialize

* @return A corresponding array of bytes, or null if a byte array could not be created

*/

public static byte[] SerializeObject(Object obj) {

// My process here is to pass the object through two input streams which handle different types of data.

// At the lowest level of course they both handle binary data, hence they are compatible and can pass

// data to each other.

try {

94

// Create a byte array output stream, this will allow us to get a byte array output from whatever we

input into the stream.

ByteArrayOutputStream baos = new ByteArrayOutputStream();

// Now we create a object output stream as a wrapper over the byte array stream.

// This means that when we pass an object into the object output stream, it will be passed straight into

the byte array stream.

ObjectOutputStream oos = new ObjectOutputStream(baos);

// Writing the object to the object stream and flushing the changes

oos.writeObject(obj);

oos.flush();

// We can now extract the byte array from the byte stream

byte[] objBytes = baos.toByteArray();

// ... and close the two streams

oos.close();

baos.close();

return objBytes;

} catch (IOException e) {

e.printStackTrace();

return null;

}

}

/**

* Turn an array of bytes into an object.

* @param bytes The array of bytes to deserialize.

* @return The resulting object, or null if no object could be created.

*/

public static Object DeserializeObject(byte[] bytes) {

// The process here is effectively the same as in the serialize object method, except in reverse.

try {

// Create the byte array INPUT stream from the byte array, this provides the stream with somewhere to get

data from.

ByteArrayInputStream baos = new ByteArrayInputStream(bytes);

// Create an object input stream as a wrapper of the byte array stream, this allows us to extract objects

from the byte array stream.

ObjectInputStream ois = new ObjectInputStream(baos);

// Attempt to read an object from the stream.

Object obj = ois.readObject();

// Close the streams

ois.close();

baos.close();

return obj;

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

return null;

}

}

/**

* Split an object into chunks of bytes, each chunk contains 64 bytes.

* @param obj The object to split.

* @return An array of ByteChunk objects.

*/

public static ByteChunk[] SplitObjectToByteChunks(Object obj) {

// Serialize the object into an array of bytes

byte[] bytes = EncryptedObject.SerializeObject(obj);

95

// Create two lists, one for sets of 64 bytes, and one for the current set of 64 bytes

ArrayList<byte[]> byte64Chunks = new ArrayList<>();

ArrayList<Byte> currentBytes = new ArrayList<>();

for (byte aByte : bytes) {

// Add a byte to the current bytes list

currentBytes.add(aByte);

// If the current bytes list has 64 bytes in it, create a byte array from this and add it to the set of

64 bytes,

// then clear the current bytes list.

if (currentBytes.size() == 64) {

byte[] chunk = new byte[64];

for (int b = 0; b < 64; b++) {

chunk[b] = currentBytes.get(b);

}

byte64Chunks.add(chunk);

currentBytes.clear();

}

}

// If the number of bytes was not a multiple of 64, there will be some bytes left over in the current bytes

// array after this loop finishes, so create a byte array from the remaining bytes and add then to the set of

64 bytes.

if ((bytes.length % 64) != 0) {

byte[] chunk = new byte[currentBytes.size()];

for (int b = 0; b < currentBytes.size(); b++) {

chunk[b] = currentBytes.get(b);

}

byte64Chunks.add(chunk);

}

// Turn the set of 64 bytes into an array of ByteChunk objects

ByteChunk[] result = new ByteChunk[byte64Chunks.size()];

for (int i = 0; i < byte64Chunks.size(); i++) {

result[i] = new ByteChunk(byte64Chunks.get(i));

}

return result;

}

/**

* Turn an array of byte chunks in an object.

* @param chunks The byte chunks to compile.

* @return The resulting object, or null if one could not be created from the data.

*/

public static Object CompileByteChunks(ByteChunk[] chunks) {

// Get the byte arrays from each of the byte chunks

ArrayList<byte[]> chunkArrays = new ArrayList<>();

int byteCount = 0;

for (ByteChunk chunk : chunks) {

byte[] arr = chunk.GetByteArray();

chunkArrays.add(arr);

byteCount += arr.length;

}

// Create just a straight array of bytes by copying the chunk arrays into a single, new, empty array

byte[] bytes = new byte[byteCount];

96

int bytesPointer = 0;

for (byte[] chunkArray : chunkArrays) {

System.arraycopy(chunkArray, 0, bytes, bytesPointer, chunkArray.length);

bytesPointer += chunkArray.length;

}

// Deserialize of bytes array and return the result

return EncryptedObject.DeserializeObject(bytes);

}

/**

* Combines byte arrays a and b. Array b is overlaid onto a from the end of a.

* For example, let a = [1, 2, 3, 4, 5], b = [6, 7, 8]

* The result will be [1, 2, 6, 7, 8]

* @param a Array a

* @param b Array b

* @return The combined array

*/

public static byte[] CombineByteArrays(byte[] a, byte[] b) {

byte[] result = new byte[a.length];

int lengthDifference = a.length - b.length;

if (lengthDifference < 0) {

throw new IllegalArgumentException("Array a should be larger than or the same size as array b!");

}

int cursor = 0;

while (cursor < lengthDifference) {

result[cursor] = a[cursor];

cursor++;

}

while ((cursor - lengthDifference) < b.length) {

result[cursor] = b[cursor - lengthDifference];

cursor++;

}

return result;

}

}

KeyPair
package com.nathcat.RSA;

import java.io.Serializable;

import java.math.BigInteger;

import java.util.Arrays;

/**

* Contains a pair of RSA encryption keys

*

* @author Nathan "Nathcat" Baines

*/

97

public class KeyPair implements Serializable {

public PublicKey pub = null;

public PrivateKey pri = null;

public KeyPair(PublicKey pub, PrivateKey pri) {

this.pub = pub;

this.pri = pri;

}

/**

* Give a string representation of this KeyPair

* @return string representation of this KeyPair

*/

public String toString() {

String result = "";

if (this.pub != null) {

result += "Public key----------\nn = " + this.pub.n.toString() + "\ne = " + this.pub.e.toString();

}

if (this.pub != null && this.pri != null) {

result += "\n\n";

}

if (this.pri != null) {

result += "Private Key-----\nn = " + this.pri.n.toString() + "\nd = " + this.pri.d.toString();

}

return result;

}

/**

* Encrypt an object

* @param obj The object to encrypt

* @return The encypted object

* @throws PublicKeyException Thrown if the public key is null

*/

public EncryptedObject encrypt(Object obj) throws PublicKeyException {

if (this.pub == null) {

throw new PublicKeyException();

}

ByteChunk[] chunks = EncryptedObject.SplitObjectToByteChunks(obj);

for (int i = 0; i < chunks.length; i++) {

chunks[i].integer = chunks[i].integer.modPow(this.pub.e, this.pub.n);

}

return new EncryptedObject(chunks);

}

/**

* Decrypt an object

* @param obj The object to decrypt

* @return The original object

* @throws PrivateKeyException Thrown if the private key is null

*/

public Object decrypt(EncryptedObject obj) throws PrivateKeyException {

if (this.pri == null) {

98

throw new PrivateKeyException();

}

ByteChunk[] chunks = obj.byteChunks;

for (int i = 0; i < chunks.length; i++) {

chunks[i].integer = chunks[i].integer.modPow(this.pri.d, this.pri.n);

}

return EncryptedObject.CompileByteChunks(chunks);

}

}

Secondary testing

Data Expected outcome from
sequential encrypt then
decrypt

Actual outcome

User class An identical class An identical class

Friendship class An identical class An identical class

Friend request class An identical class An identical class

Chat invite class An identical class An identical class

Chat class An identical class An identical class

Message class An identical class An identical class

KeyPair class An identical class An identical class

Testing after implementing the fix displayed the expected behaviour, so this issue has been resolved
and we can move onto the next stage of development.

Database
This part of the application will be contained within a package called
com.nathcat.messagecat_database. This contains a number of classes which provide layers of
abstraction to the process of accessing the database behind the application. This makes the program
more maintainable and simpler to develop.

MySQLHandler
package com.nathcat.messagecat_database;

import com.mysql.cj.jdbc.exceptions.CommunicationsException;

import com.nathcat.messagecat_database_entities.*;

import org.json.simple.JSONObject;

import org.json.simple.parser.JSONParser;

import org.json.simple.parser.ParseException;

import java.io.File;

import java.io.FileNotFoundException;

99

import java.sql.*;

import java.util.Scanner;

/**

* This class handles calls to the MySQL database made through the Database class.

*

* @author Nathan "Nathcat" Baines

*/

public class MySQLHandler {

private Connection conn; // The connection to the MySQL database.

private final JSONObject config; // Config JSONObject

/**

* Default constructor, creates a connection to the database.

*/

public MySQLHandler() throws FileNotFoundException, ParseException, SQLException {

// Instead of catching those exceptions, we should leave them to be caught elsewhere.

// If any of them are thrown, this object shouldn't be allowed to be created.

// Get the MySQL config file

this.config = this.GetMySQLConfig();

StartConnection();

}

private void StartConnection() throws SQLException {

// Create a connection to the MySQL database.

conn = DriverManager.getConnection((String) config.get("connection_url"), (String) config.get("username"),

(String) config.get("password"));

}

/**

* Get the MySQL config JSON file.

* @return A JSON Object containing MySQL config data.

* @throws FileNotFoundException Thrown if the config file cannot be found.

* @throws ParseException Thrown if the data in the config file contains a syntax error.

*/

private JSONObject GetMySQLConfig() throws FileNotFoundException, ParseException {

Scanner reader = new Scanner(new File("Assets/MySQL_Config.json"));

StringBuilder sb = new StringBuilder();

while (reader.hasNextLine()) {

sb.append(reader.nextLine());

}

return (JSONObject) new JSONParser().parse(sb.toString());

}

/**

* Perform a Select query on the database.

* @param query The query to be executed

* @return The ResultSet returned from the query

* @throws SQLException Thrown by SQL errors.

*/

protected ResultSet Select(String query) throws SQLException {

// Create and execute the statement

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_READ_ONLY);

100

stmt.execute(query);

// Get the result set and close the statement

ResultSet rs = stmt.getResultSet();

// Return the result set

return rs;

}

/**

* Perform an update query on the database (or any query that does not have a result set)

* @param query The query to be executed

* @throws SQLException Thrown by SQL errors

*/

protected void Update(String query) throws SQLException {

// Create and execute the statement

Statement stmt = conn.createStatement();

stmt.execute(query);

// Close the statement

stmt.close();

}

/**

* Get a User by their ID.

* @param UserID The UserID to search for.

* @return The User that was found, or null if none were found.

* @throws SQLException Thrown by SQL errors.

*/

public User GetUserByID(int UserID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `Users` WHERE `UserID` like " + UserID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return null;

}

// There must be 1 result, since we are searching for a primary key.

// Get the data from this 1 result, close the result set, and return the user.

rs.first();

User result = new User(

rs.getInt("UserID"),

rs.getString("Username"),

rs.getString("Password"),

rs.getString("DisplayName"),

rs.getString("DateCreated"),

rs.getString("ProfilePicturePath")

);

rs.close();

return result;

}

/**

* Get a user by their username.

* @param Username The username to search for

101

* @return The User that is found, or null, if none are found.

* @throws SQLException Thrown by SQL errors.

*/

public User GetUserByUsername(String Username) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `Users` WHERE `Username` like '" + Username + "'");

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return null;

}

// There must be 1 result, since we are searching for a unique value.

// Get the data from this 1 result, close the result set, and return the user.

rs.first();

User result = new User(

rs.getInt("UserID"),

rs.getString("Username"),

rs.getString("Password"),

rs.getString("DisplayName"),

rs.getString("DateCreated"),

rs.getString("ProfilePicturePath")

);

rs.close();

return result;

}

/**

* Get a list of users by their display name.

* @param DisplayName The display name to search for

* @return A list of users whose display names start with DisplayName

* @throws SQLException Thrown by SQL errors.

*/

public User[] GetUserByDisplayName(String DisplayName) throws SQLException {

// Get the result set from the query, include a wildcard character in the query so that we get the users whose

// display names start with DisplayName.

ResultSet rs = this.Select("SELECT * FROM `Users` WHERE `DisplayName` like '" + DisplayName + "%'");

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return new User[0];

}

// There must be at least one result, so create an array of Users.

User[] results = new User[rs.getRow()];

rs.beforeFirst();

while (rs.next()) {

results[rs.getRow() - 1] = new User(

rs.getInt("UserID"),

rs.getString("Username"),

rs.getString("Password"),

rs.getString("DisplayName"),

102

rs.getString("DateCreated"),

rs.getString("ProfilePicturePath")

);

}

rs.close();

return results;

}

/**

* Get a friendship record from the database

* @param FriendshipID The ID of the record

* @return The record found, or null if none are found

* @throws SQLException Thrown by SQL errors

*/

public Friendship GetFriendshipByID(int FriendshipID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `Friendships` WHERE `FriendshipID` like " + FriendshipID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return null;

}

// There must be 1 result, since we are searching for a unique value.

// Get the data from this 1 result, close the result set, and return the friendship.

rs.first();

Friendship result = new Friendship(

rs.getInt("FriendshipID"),

rs.getInt("UserID"),

rs.getInt("FriendID"),

rs.getString("DateEstablished")

);

rs.close();

return result;

}

/**

* Get a friendship record by the UserID

* @param UserID The UserID to search for

* @return The records found, or an empty array if none are found

* @throws SQLException Thrown by SQL errors

*/

public Friendship[] GetFriendshipByUserID(int UserID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `Friendships` WHERE `UserID` like " + UserID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return new Friendship[0];

}

// There must be at least one result, so create an array of friendships.

Friendship[] results = new Friendship[rs.getRow()];

103

rs.beforeFirst();

while (rs.next()) {

results[rs.getRow() - 1] = new Friendship(

rs.getInt("FriendshipID"),

rs.getInt("UserID"),

rs.getInt("FriendID"),

rs.getString("DateEstablished")

);

}

rs.close();

return results;

}

/**

* Get a friendship record by its UserID and FriendID

* @param UserID The UserID

* @param FriendID The FriendID

* @return The Friendship record that is found, or null if none are found

* @throws SQLException Thrown by SQL errors

*/

public Friendship GetFriendshipByUserIDAndFriendID(int UserID, int FriendID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `Friendships` WHERE `UserID` like " + UserID + " AND `FriendID` like

" + FriendID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return null;

}

// There must be 1 result, since we are searching for a unique value.

// Get the data from this 1 result, close the result set, and return the friendship.

rs.first();

Friendship result = new Friendship(

rs.getInt("FriendshipID"),

rs.getInt("UserID"),

rs.getInt("FriendID"),

rs.getString("DateEstablished")

);

rs.close();

return result;

}

/**

* Get a User's friend requests (requests where they are the recipient)

* @param RecipientID The UserID of the recipient

* @return An array of friend requests

* @throws SQLException Thrown by SQL errors

*/

public FriendRequest[] GetFriendRequestsByRecipientID(int RecipientID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `FriendRequests` WHERE `RecipientID` like " + RecipientID);

104

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return new FriendRequest[0];

}

// There must be at least one result, so create an array of requests.

FriendRequest[] results = new FriendRequest[rs.getRow()];

rs.beforeFirst();

while (rs.next()) {

results[rs.getRow() - 1] = new FriendRequest(

rs.getInt("FriendRequestID"),

rs.getInt("SenderID"),

rs.getInt("RecipientID"),

rs.getLong("TimeSent")

);

}

rs.close();

return results;

}

/**

* Get a User's friend requests (requests they have sent)

* @param SenderID The UserID of the sender

* @return An array of friend requests

* @throws SQLException Thrown by SQL errors

*/

public FriendRequest[] GetFriendRequestsBySenderID(int SenderID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `FriendRequests` WHERE `SenderID` like " + SenderID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return new FriendRequest[0];

}

// There must be at least one result, so create an array of requests.

FriendRequest[] results = new FriendRequest[rs.getRow()];

rs.beforeFirst();

while (rs.next()) {

results[rs.getRow() - 1] = new FriendRequest(

rs.getInt("FriendRequestID"),

rs.getInt("SenderID"),

rs.getInt("RecipientID"),

rs.getLong("TimeSent")

);

}

rs.close();

return results;

105

}

/**

* Delete a friend request

* @param FriendRequestID The ID of the friend request to delete

* @throws SQLException Thrown by SQL errors

*/

public void DeleteFriendRequest(int FriendRequestID) throws SQLException {

this.Update("DELETE FROM `FriendRequests` WHERE `FriendRequestID` like " + FriendRequestID);

}

/**

* Get a chat record from the database

* @param ChatID The ID of the record

* @return The record found, or null if none are found

* @throws SQLException Thrown by SQL errors

*/

public Chat GetChatByID(int ChatID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `Chats` WHERE `ChatID` like " + ChatID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return null;

}

// There must be 1 result, since we are searching for a unique value.

// Get the data from this 1 result, close the result set, and return the chat.

rs.first();

Chat result = new Chat(

rs.getInt("ChatID"),

rs.getString("Name"),

rs.getString("Description"),

rs.getInt("PublicKeyID")

);

rs.close();

return result;

}

/**

* Get a chat record from the database by the public key id associated with it

* @param PublicKeyID The public key id to search for

* @return The Chat that is found

* @throws SQLException Thrown by SQL errors

*/

public Chat GetChatByPublicKeyID(int PublicKeyID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `Chats` WHERE `PublicKeyID` like " + PublicKeyID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return null;

}

106

// There must be 1 result, since we are searching for a unique value.

// Get the data from this 1 result, close the result set, and return the chat.

rs.first();

Chat result = new Chat(

rs.getInt("ChatID"),

rs.getString("Name"),

rs.getString("Description"),

rs.getInt("PublicKeyID")

);

rs.close();

return result;

}

/**

* Get a chat invite record from the database

* @param ChatInviteID The ID of the record

* @return The record found, or null if none are found

* @throws SQLException Thrown by SQL errors

*/

public ChatInvite GetChatInviteByID(int ChatInviteID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `ChatInvitations` WHERE `ChatInviteID` like " + ChatInviteID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return null;

}

// There must be 1 result, since we are searching for a unique value.

// Get the data from this 1 result, close the result set, and return the invite

rs.first();

ChatInvite result = new ChatInvite(

rs.getInt("ChatInviteID"),

rs.getInt("ChatID"),

rs.getInt("SenderID"),

rs.getInt("RecipientID"),

rs.getLong("TimeSent"),

rs.getInt("PrivateKeyID")

);

rs.close();

return result;

}

/**

* Get a user's invitations to chats

* @param RecipientID The UserID of the recipient

* @return An array of chat invites

* @throws SQLException Thrown by SQL errors

*/

public ChatInvite[] GetChatInvitesByRecipientID(int RecipientID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `ChatInvitations` WHERE `RecipientID` like " + RecipientID);

// Check if there are no results

107

rs.last();

if (rs.getRow() == 0) {

return new ChatInvite[0];

}

// There must be at least one result, so create an array of invites.

ChatInvite[] results = new ChatInvite[rs.getRow()];

rs.beforeFirst();

while (rs.next()) {

results[rs.getRow() - 1] = new ChatInvite(

rs.getInt("ChatInviteID"),

rs.getInt("ChatID"),

rs.getInt("SenderID"),

rs.getInt("RecipientID"),

rs.getLong("TimeSent"),

rs.getInt("PrivateKeyID")

);

}

rs.close();

return results;

}

/**

* Get a user's invitations to chats

* @param SenderID The UserID of the sender

* @return An array of chat invites

* @throws SQLException Thrown by SQL errors

*/

public ChatInvite[] GetChatInvitesBySenderID(int SenderID) throws SQLException {

// Get the result set from the query

ResultSet rs = this.Select("SELECT * FROM `ChatInvitations` WHERE `SenderID` like " + SenderID);

// Check if there are no results

rs.last();

if (rs.getRow() == 0) {

return new ChatInvite[0];

}

// There must be at least one result, so create an array of invites.

ChatInvite[] results = new ChatInvite[rs.getRow()];

rs.beforeFirst();

while (rs.next()) {

results[rs.getRow() - 1] = new ChatInvite(

rs.getInt("ChatInviteID"),

rs.getInt("ChatID"),

rs.getInt("SenderID"),

rs.getInt("RecipientID"),

rs.getLong("TimeSent"),

rs.getInt("PrivateKeyID")

);

}

108

rs.close();

return results;

}

/**

* Delete a chat invite from the database

* @param ChatInviteID The ID of the chat invite

* @throws SQLException Thrown by SQL errors

*/

public void DeleteChatInvite(int ChatInviteID) throws SQLException {

this.Update("DELETE FROM `ChatInvitations` WHERE `ChatInviteID` like " + ChatInviteID);

}

/**

* Adds a user to the database

* @param user The user to add

* @throws SQLException Thrown by SQL errors

*/

public void AddUser(User user) throws SQLException {

this.Update("insert into `Users` (`Username`, `Password`, `DisplayName`, `DateCreated`, `ProfilePicturePath`)

values (" +

"\"" + user.Username + "\", " +

"\"" + user.Password + "\", " +

"\"" + user.DisplayName + "\", " +

"\"" + user.DateCreated + "\", " +

"\"" + user.ProfilePicturePath + "\");"

);

}

/**

* Adds a friendship to the database

* @param friendship The friendship to add

* @throws SQLException Thrown by SQL errors

*/

public void AddFriendship(Friendship friendship) throws SQLException {

this.Update("insert into `Friendships` (`UserID`, `FriendID`, `DateEstablished`) values (" +

friendship.UserID + ", " +

friendship.FriendID + ", " +

"\"" + friendship.DateEstablished + "\");"

);

}

/**

* Adds a friend request to the database

* @param friendRequest The friend request to add

* @throws SQLException Thrown by SQL errors

*/

public void AddFriendRequest(FriendRequest friendRequest) throws SQLException {

this.Update("insert into `FriendRequests` (`SenderID`, `RecipientID`, `TimeSent`) values (" +

friendRequest.SenderID + ", " +

friendRequest.RecipientID + ", " +

friendRequest.TimeSent + ");"

);

}

/**

* Adds a chat to the database

109

* @param chat The chat to add

* @throws SQLException Thrown by SQL errors

*/

public void AddChat(Chat chat) throws SQLException {

this.Update("insert into `Chats` (`Name`, `Description`, `PublicKeyID`) values (" +

"\"" + chat.Name + "\", " +

"\"" + chat.Description + "\", " +

chat.PublicKeyID + ");"

);

}

/**

* Adds a chat invite to the database

* @param chatInvite The chat invite to add

* @throws SQLException Thrown by SQL errors

*/

public void AddChatInvite(ChatInvite chatInvite) throws SQLException {

this.Update("insert into `ChatInvitations` (`ChatID`, `SenderID`, `RecipientID`, `TimeSent`, `PrivateKeyID`)

values (" +

chatInvite.ChatID + ", " +

chatInvite.SenderID + ", " +

chatInvite.RecipientID + ", " +

chatInvite.TimeSent + ", " +

chatInvite.PrivateKeyID + ");"

);

}

}

KeyStore
package com.nathcat.messagecat_database;

import com.nathcat.RSA.*;

import java.io.*;

import java.util.HashMap;

/**

* Stores Public and Private encryption keys

*

* @author Nathan "Nathcat" Baines

*/

public class KeyStore {

private HashMap<Integer, KeyPair> data;

private File dataFile;

/**

* Default constructor

*/

public KeyStore() throws IOException {

dataFile = new File("Assets/Data/KeyStore.bin");

try {

// Try to read the data file

data = this.ReadFromFile();

110

} catch (FileNotFoundException e) { // Thrown if the file does not exist

// Create a new empty hash map and create a new file for it

data = new HashMap<Integer, KeyPair>();

this.WriteToFile();

} catch (IOException | ClassNotFoundException e) { // Potentially thrown by I/O operations

e.printStackTrace();

}

assert this.data != null;

}

/**

* Default constructor

*/

public KeyStore(File file) throws IOException {

this.dataFile = file;

try {

// Try to read the data file

data = this.ReadFromFile();

} catch (FileNotFoundException e) { // Thrown if the file does not exist

// Create a new empty hash map and create a new file for it

data = new HashMap<Integer, KeyPair>();

this.WriteToFile();

} catch (IOException | ClassNotFoundException e) { // Potentially thrown by I/O operations

e.printStackTrace();

}

assert this.data != null;

}

/**

* Read data from data file

* @return The HashMap found in the data file

* @throws IOException Can be thrown by I/O operations

* @throws ClassNotFoundException Thrown if the Serialized class cannot be found

*/

public HashMap<Integer, KeyPair> ReadFromFile() throws IOException, ClassNotFoundException {

ObjectInputStream ois = new ObjectInputStream(new FileInputStream(this.dataFile));

return (HashMap<Integer, KeyPair>) ois.readObject();

}

/**

* Write data to data file

* @throws IOException Can be thrown by I/O operations

*/

public void WriteToFile() throws IOException {

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(this.dataFile));

oos.writeObject(data);

oos.flush();

oos.close();

}

111

/**

* Get a key pair object given its identifier

* @param keyID The identifier to search for

* @return The KeyPair object found, note that this KeyPair con contain one or both key, depending on the use case

*/

public KeyPair GetKeyPair(int keyID) {

return this.data.get(keyID);

}

/**

* Add a new key pair, using the hash code of the KeyPair object as the id

* @param pair The KeyPair to add

* @return The result code

*/

public Result AddKeyPair(KeyPair pair) {

// Create a copy of the original data

Object oldData = this.data.clone();

// Make the changes to the hash map

this.data.put(pair.hashCode(), pair);

// Try to write the changes to the data file, or revert to the original state

try {

this.WriteToFile();

return Result.SUCCESS;

} catch (IOException e) {

this.data = (HashMap<Integer, KeyPair>) oldData;

return Result.FAILED;

}

}

/**

* Remove a key pair

* @param keyID The ID of the KeyPair object

* @return The result code

*/

public Result RemoveKeyPair(int keyID) {

// Create a copy of the original data

Object oldData = this.data.clone();

// Make the changes to the hash map

this.data.remove(keyID);

// Try to write the changes to the data file, or revert to the original state

try {

this.WriteToFile();

return Result.SUCCESS;

} catch (IOException e) {

this.data = (HashMap<Integer, KeyPair>) oldData;

return Result.FAILED;

}

}

}

112

Queue
package com.nathcat.messagecat_server;

import java.io.Serializable;

import java.util.Arrays;

/**

* Queue data structure implemented using an internal linked list

*

* @author Nathan "Nathcat" Baines

*/

public class Queue implements Cloneable, Serializable {

private Node startNode = null; // The start node of the linked list

private int maxLength = -1; // The maximum length of the queue

private int length = 0; // The current length of the queue

/**

* Represents a node of the linked list

*/

private static class Node implements Cloneable, Serializable {

public final Object data; // The data contained by the node

public Node nextNode; // The next node in the linked list

public Node(Object data, Node nextNode) {

this.data = data;

this.nextNode = nextNode;

}

/**

* Create an identical copy of this object

* @return The clone of this object

*/

@Override

public Object clone() {

try {

return super.clone();

} catch (CloneNotSupportedException e) {

e.printStackTrace();

}

return null;

}

}

public Queue() {}

public Queue(int maxLength) {

this.maxLength = maxLength;

}

/**

* Push a new object to the end of the queue

* @param data The object to push

113

*/

public void Push(Object data) {

if (length >= maxLength && maxLength != -1) {

this.Pop();

}

if (this.startNode == null) {

this.startNode = new Node(data, null);

length++;

return;

}

Node currentNode = this.startNode;

while (currentNode.nextNode != null) {

currentNode = currentNode.nextNode;

}

currentNode.nextNode = new Node(data, null);

this.length++;

}

/**

* Remove the object from the front of the queue

* @return The object that was at the front of the queue

*/

public Object Pop() {

if (this.startNode == null) {

return null;

}

Object data = this.startNode.data;

this.startNode = this.startNode.nextNode;

this.length--;

return data;

}

/**

* Get an object from a given index

* @param index The index of the object to get

* @return The object at the given index

*/

public Object Get(int index) {

Node currentNode = this.startNode;

if (currentNode == null) {

return null;

}

for (int i = 0; i < index; i++) {

currentNode = currentNode.nextNode;

if (currentNode == null) {

return null;

}

}

return currentNode.data;

}

114

@Override

public String toString() {

if (this.startNode == null) {

return "";

}

StringBuilder sb = new StringBuilder();

Node currentNode = this.startNode;

sb.append(this.startNode.data);

while (currentNode.nextNode != null) {

currentNode = currentNode.nextNode;

sb.append(currentNode.data).append(" ");

}

return sb.toString();

}

/**

* Create an identical copy of this object

* @return The clone of this object

*/

@Override

public Object clone() {

try {

return super.clone();

} catch (CloneNotSupportedException e) {

e.printStackTrace();

}

return null;

}

}

MessageQueue
package com.nathcat.messagecat_database;

import com.nathcat.messagecat_database_entities.Message;

import com.nathcat.messagecat_server.Queue;

import java.io.Serializable;

/**

* Queue data structure for storing messages.

*

* @author Nathan "Nathcat" Baines

*/

public class MessageQueue implements Serializable {

public final int ChatID; // The ID of the chat this queue is linked to

private Queue data; // The Queue which will be used to store data

/**

* Default constructor

* @param ChatID The ID of the chat this queue is to be linked to

115

*/

public MessageQueue(int ChatID) {

this.ChatID = ChatID;

data = new Queue(10);

}

/**

* Push a new message to the back of the queue

* @param message The new message

*/

public void Push(Message message) {

this.data.Push(message);

}

/**

* Remove the item at the front of the queue

*/

public void Pop() {

this.data.Pop();

}

/**

* Get the message at index i from the data array

* @param i The index to get

* @return The message object at that index

*/

public Message Get(int i) {

return (Message) this.data.Get(i);

}

/**

* Return an array of JSON strings for all messages in the queue

* @return An array of JSON strings for all the messages in the queue

*/

public String[] GetJSONString() {

String[] result = new String[50];

for (int i = 0; i < 50; i++) {

if (this.data.Get(i) == null) {

continue;

}

result[i] = ((Message) this.data.Get(i)).GetJSONObject().toJSONString();

}

return result;

}

public Object Clone() throws CloneNotSupportedException {

return this.clone();

}

}

MessageStore
package com.nathcat.messagecat_database;

116

import java.io.*;

import java.util.HashMap;

/**

* This class will handle messages.

*

* @author Nathan "Nathcat" Baines

*/

public class MessageStore {

private HashMap<Integer, MessageQueue> data = null; // Keys are the chat ids, and the values are the message

queues

/**

* Default constructor

*/

public MessageStore() throws IOException {

try {

// Try to read the data file

data = this.ReadFromFile();

} catch (FileNotFoundException e) { // Thrown if the file does not exist

// Create a new empty hash map and create a new file for it

data = new HashMap<Integer, MessageQueue>();

this.WriteToFile();

} catch (IOException | ClassNotFoundException e) { // Potentially thrown by I/O operations

e.printStackTrace();

}

assert this.data != null;

}

/**

* Read data from data file

* @return The HashMap found in the data file

* @throws IOException Can be thrown by I/O operations

* @throws ClassNotFoundException Thrown if the Serialized class cannot be found

*/

public HashMap<Integer, MessageQueue> ReadFromFile() throws IOException, ClassNotFoundException {

ObjectInputStream ois = new ObjectInputStream(new FileInputStream("Assets/Data/MessageStore.bin"));

return (HashMap<Integer, MessageQueue>) ois.readObject();

}

/**

* Write data to data file

* @throws IOException Can be thrown by I/O operations

*/

public void WriteToFile() throws IOException {

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("Assets/Data/MessageStore.bin"));

oos.writeObject(data);

oos.flush();

oos.close();

}

/**

* Get a message queue

117

* @param ChatID The ChatID of the chat for which you are retrieve the message queue

* @return The MessageQueue

*/

public MessageQueue GetMessageQueue(int ChatID) {

return this.data.get(ChatID);

}

/**

* Add a message queue

* @param queue The message queue to add

* @return Result code

*/

public Result AddMessageQueue(MessageQueue queue) {

// Create a copy of the original data

Object dataCopy = this.data.clone();

// Add the new queue

this.data.put(queue.ChatID, queue);

// Try to write the new data to the data file

try {

this.WriteToFile();

return Result.SUCCESS;

} catch (IOException e) {

// Revert the data to its original form

e.printStackTrace();

this.data = (HashMap<Integer, MessageQueue>) dataCopy;

return Result.FAILED;

}

}

/**

* Remove a message queue

* @param ChatID The ID of the chat whose message queue you are trying to delete

* @return Result code

*/

public Result RemoveMessageQueue(int ChatID) {

// Create a copy of the original data

Object dataCopy = this.data.clone();

// Add the new queue

this.data.remove(ChatID);

// Try to write the new data to the data file

try {

this.WriteToFile();

return Result.SUCCESS;

} catch (IOException e) {

// Revert the data to its original form

e.printStackTrace();

this.data = (HashMap<Integer, MessageQueue>) dataCopy;

return Result.FAILED;

}

}

}

118

Database
package com.nathcat.messagecat_database;

import com.nathcat.RSA.KeyPair;

import com.nathcat.messagecat_database_entities.*;

import org.json.simple.parser.ParseException;

import java.io.IOException;

import java.sql.SQLException;

/**

* Wrapper which combines the different database systems into one unit.

*

* @author Nathan "Nathcat" Baines

*/

public class Database {

protected MySQLHandler mySQLHandler = null; // MySQLHandler instance

protected MessageStore messageStore = null; // MessageStore instance

protected KeyStore keyStore = null; // KeyStore instance

private final ExpirationManager expirationManager; // The expiration manager

/**

* Default constructor

*/

public Database() {

// Try to create instances of the three database systems

try {

this.mySQLHandler = new MySQLHandler();

this.keyStore = new KeyStore();

this.messageStore = new MessageStore();

} catch (ParseException | SQLException | IOException e) {

e.printStackTrace();

}

// Ensure that all the systems have been initialised correctly

assert this.mySQLHandler != null && this.messageStore != null && this.keyStore != null;

// Start the expiration manager

expirationManager = new ExpirationManager(this);

expirationManager.setDaemon(true);

expirationManager.start();

}

/**

* @see MessageStore#WriteToFile()

* @see KeyStore#WriteToFile()

*/

public void SaveKeyAndMessageStore() {

try {

this.messageStore.WriteToFile();

this.keyStore.WriteToFile();

} catch (IOException e) {

119

e.printStackTrace();

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetUserByID(int)

*/

public User GetUserByID(int UserID) {

try {

return this.mySQLHandler.GetUserByID(UserID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetUserByUsername(String)

*/

public User GetUserByUsername(String Username) {

try {

return this.mySQLHandler.GetUserByUsername(Username);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetUserByDisplayName(String)

*/

public User[] GetUserByDisplayName(String DisplayName) {

try {

return this.mySQLHandler.GetUserByDisplayName(DisplayName);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetFriendshipByID(int)

*/

public Friendship GetFriendshipByID(int FriendshipID) {

try {

return this.mySQLHandler.GetFriendshipByID(FriendshipID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

120

* @see com.nathcat.messagecat_database.MySQLHandler#GetFriendshipByUserID(int)

*/

public Friendship[] GetFriendshipByUserID(int UserID) {

try {

return this.mySQLHandler.GetFriendshipByUserID(UserID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetFriendshipByUserIDAndFriendID(int, int)

*/

public Friendship GetFriendshipByUserIDAndFriendID(int UserID, int FriendID) {

try {

return this.mySQLHandler.GetFriendshipByUserIDAndFriendID(UserID, FriendID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetFriendRequestsBySenderID(int)

*/

public FriendRequest[] GetFriendRequestsBySenderID(int SenderID) {

try {

return this.mySQLHandler.GetFriendRequestsBySenderID(SenderID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetFriendRequestsByRecipientID(int)

*/

public FriendRequest[] GetFriendRequestsByRecipientID(int RecipientID) {

try {

return this.mySQLHandler.GetFriendRequestsByRecipientID(RecipientID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#DeleteFriendRequest(int)

*/

public Result DeleteFriendRequest(int FriendRequestID) {

try {

this.mySQLHandler.DeleteFriendRequest(FriendRequestID);

121

return Result.SUCCESS;

} catch (SQLException e) {

return Result.FAILED;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetChatByID(int)

*/

public Chat GetChatByID(int ChatID) {

try {

return this.mySQLHandler.GetChatByID(ChatID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetChatByPublicKeyID(int)

*/

public Chat GetChatByPublicKeyID(int PublicKeyID) {

try {

return this.mySQLHandler.GetChatByPublicKeyID(PublicKeyID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetChatInviteByID(int)

*/

public ChatInvite GetChatInviteByID(int ChatInviteID) {

try {

return this.mySQLHandler.GetChatInviteByID(ChatInviteID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetChatInvitesBySenderID(int)

*/

public ChatInvite[] GetChatInvitesBySenderID(int SenderID) {

try {

return this.mySQLHandler.GetChatInvitesBySenderID(SenderID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

122

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#GetChatInvitesByRecipientID(int)

*/

public ChatInvite[] GetChatInvitesByRecipientID(int RecipientID) {

try {

return this.mySQLHandler.GetChatInvitesByRecipientID(RecipientID);

} catch (SQLException e) {

e.printStackTrace();

return null;

}

}

public Result DeleteChatInvite(int ChatInviteID) {

try {

this.mySQLHandler.DeleteChatInvite(ChatInviteID);

return Result.SUCCESS;

} catch (SQLException e) {

return Result.FAILED;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#AddUser(User)

*/

public Result AddUser(User user) {

try {

this.mySQLHandler.AddUser(user);

return Result.SUCCESS;

} catch (SQLException e) {

e.printStackTrace();

return Result.FAILED;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#AddFriendship(Friendship)

*/

public Result AddFriendship(Friendship friendship) {

try {

this.mySQLHandler.AddFriendship(friendship);

return Result.SUCCESS;

} catch (SQLException e) {

e.printStackTrace();

return Result.FAILED;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#AddFriendRequest(FriendRequest)

*/

public Result AddFriendRequest(FriendRequest friendRequest) {

123

try {

this.mySQLHandler.AddFriendRequest(friendRequest);

return Result.SUCCESS;

} catch (SQLException e) {

e.printStackTrace();

return Result.FAILED;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#AddChat(Chat)

*/

public Result AddChat(Chat chat) {

try {

this.mySQLHandler.AddChat(chat);

return Result.SUCCESS;

} catch (SQLException e) {

e.printStackTrace();

return Result.FAILED;

}

}

/**

* @see com.nathcat.messagecat_database.MySQLHandler#AddChatInvite(ChatInvite)

*/

public Result AddChatInvite(ChatInvite chatInvite) {

try {

this.mySQLHandler.AddChatInvite(chatInvite);

return Result.SUCCESS;

} catch (SQLException e) {

e.printStackTrace();

return Result.FAILED;

}

}

/**

* @see com.nathcat.messagecat_database.MessageStore#GetMessageQueue(int)

*/

public MessageQueue GetMessageQueue(int ChatID) {

return this.messageStore.GetMessageQueue(ChatID);

}

/**

* @see com.nathcat.messagecat_database.MessageStore#AddMessageQueue(MessageQueue)

*/

public Result AddMessageQueue(MessageQueue messageQueue) {

return this.messageStore.AddMessageQueue(messageQueue);

}

/**

* Add a key pair to the key store

* @param pair The key pair to add

* @return The result code

* @see com.nathcat.messagecat_database.KeyStore#AddKeyPair(KeyPair)

124

*/

public Result AddKeyPair(KeyPair pair) {

return this.keyStore.AddKeyPair(pair);

}

/**

* Get a key pair from the key store

* @param keyID The ID of the key pair

* @return The key pair found at this ID

*/

public KeyPair GetKeyPair(int keyID) {

return this.keyStore.GetKeyPair(keyID);

}

/**

* Remove a key pair from the key store

* @param id The id of the key pair to remove

* @return The result code

* @see com.nathcat.messagecat_database.KeyStore#RemoveKeyPair(int)

*/

public Result RemoveKeyPair(int id) {

return this.keyStore.RemoveKeyPair(id);

}

}

ExpirationManager
package com.nathcat.messagecat_database;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.util.Date;

/**

* Manages the expiry of things such as friend requests, or chat invitations.

*/

public class ExpirationManager extends Thread {

private final Database db;

private final long maxTimeElapsed = 2592000000L;

public ExpirationManager(Database db) {

this.db = db;

}

@Override

public void run() {

// Get all friend requests from the database

ResultSet rs;

// Check friend requests

try {

rs = this.db.mySQLHandler.Select("select * from `FriendRequests`");

while (rs.next()) {

long timeSent = rs.getLong("TimeSent");

125

long currentTime = new Date().getTime();

if (currentTime >= (timeSent + this.maxTimeElapsed)) {

this.db.mySQLHandler.Update("delete from `FriendRequests` where `FriendRequestID` like " +

rs.getInt("FriendRequestID"));

}

}

} catch (SQLException e) {

this.DebugLog(e.getMessage() + " when getting friend requests.");

}

// Check chat invitations

try {

rs = this.db.mySQLHandler.Select("select * from `ChatInvitations`");

while (rs.next()) {

long timeSent = rs.getLong("TimeSent");

long currentTime = new Date().getTime();

if (currentTime >= (timeSent + this.maxTimeElapsed)) {

this.db.keyStore.RemoveKeyPair(rs.getInt("PrivateKeyID"));

this.db.mySQLHandler.Update("delete from `ChatInvitations` where `ChatInviteID` like " +

rs.getInt("ChatInviteID"));

}

}

} catch (SQLException e) {

this.DebugLog(e.getMessage() + " when getting chat invites");

}

}

private void DebugLog(String message) {

System.out.println("Database (ExpirationManager): " + message);

}

}

Testing

AddUser()

Data Expected outcome from
select statement

Actual outcome from select
statement

Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName:
Nathcat
DateCreated:
25/07/2022
ProfilePicturePath: default.png

Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName:
Nathcat
DateCreated:
25/07/2022
ProfilePicturePath: default.png

Access denied

Username: OtherPhoneNumber
Password: HelloWorld123456
DisplayName:
Herman
DateCreated:

Username: OtherPhoneNumber
Password: HelloWorld123456
DisplayName:
Herman
DateCreated:

Access denied

126

25/07/2022
ProfilePicturePath: default.png

25/07/2022
ProfilePicturePath: default.png

I received an “Access denied” error when the program attempted to connect to theMySQL server, I
discovered that this was because the IP address JDBC tried to connect to was “127.0.0.1” (localhost),
which did not fit the pattern set in the user access limitations on theMySQL server, so I changed the
IP address to “192.168.1.26”, the IP address of my device.

This fixed the “Access denied” error but uncovered another one, saying that “no database was
selected”, to rectify this I further modified the connection URL in the config file to
“jdbc:mysql://192.168.1.26:3306/messagecat”, as the path of the url tells JDBC which database to use
upon connection to the database, according to the documentation. This fixed all runtime errors.

Data Expected outcome from
select statement

Actual outcome from select
statement

Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName:
Nathcat
DateCreated:
25/07/2022
ProfilePicturePath: default.png

UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName:
Nathcat
DateCreated:
25/07/2022
ProfilePicturePath: default.png

UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName:
Nathcat
DateCreated:
25/07/2022
ProfilePicturePath: default.png

Username: OtherPhoneNumber
Password: HelloWorld123456
DisplayName:
Herman
DateCreated:
25/07/2022
ProfilePicturePath: default.png

UserID: 2
Username: OtherPhoneNumber
Password: HelloWorld123456
DisplayName:
Herman
DateCreated:
25/07/2022
ProfilePicturePath: default.png

UserID: 2
Username: OtherPhoneNumber
Password: HelloWorld123456
DisplayName:
Herman
DateCreated:
25/07/2022
ProfilePicturePath: default.png

AddFriendship()

Data Expected outcome from
select statement

Actual outcome from select
statement

UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

UserID: 2
FriendID: 1
DateEstablished: 25/07/2022

FriendshipID: 2
UserID: 2
FriendID: 1
DateEstablished: 25/07/2022

FriendshipID: 2
UserID: 2
FriendID: 1
DateEstablished: 25/07/2022

127

AddFriendRequest()

Data Expected outcome from
select statement

Actual outcome from select
statement

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659277170486

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent:

Data truncation: Out of range
value for column 'TimeSent' at
row 1

FriendRequestID: 1
SenderID: 2
RecipientID: 1
TimeSent: 1659277170486

FriendRequestID: 1
SenderID: 2
RecipientID: 1
TimeSent:

Data truncation: Out of range
value for column 'TimeSent' at
row 1

The value for TimeSent was chosen by the test program, it is the number of milliseconds that have
passed since January 1st 1970, 00:00:00 GMT (according to the Java documentation). This value is
too large to be stored in a simple integer, so it must be stored in a long integer type, which contains 64
bits, rather than 32 bits. This means that theMySQL server will need to be reconfigured slightly to
allow it to store integers that large. To do this I will change the timestamp columns which require an
INT type, to require a BIGINT type, which should be able to store the required amount of data.

alter table `FriendRequests` modify column `TimeSent` BIGINT;

alter table `ChatInvitations` modify column `TimeSent` BIGINT;

This short SQL script should perform this action. Let’s try again.

Data Expected outcome from
select statement

Actual outcome from select
statement

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659278362305

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659278362305

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659278362305

FriendRequestID: 1
SenderID: 2
RecipientID: 1
TimeSent: 1659278362305

FriendRequestID: 1
SenderID: 2
RecipientID: 1
TimeSent: 1659278362305

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659278362305

AddChat()

Data Expected outcome from
select statement

Actual outcome from select
statement

ChatID: 1
Name: “test1”
Description:
“test1-description”
PublicKeyID: 1

ChatID: 1
Name: “test1”
Description:
“test1-description”
PublicKeyID: 1

ChatID: 1
Name: “test1”
Description:
“test1-description”
PublicKeyID: 1

128

ChatID: 2
Name: “test2”
Description:
“test2-description”
PublicKeyID: 2

ChatID: 2
Name: “test2”
Description:
“test2-description”
PublicKeyID: 2

ChatID: 2
Name: “test2”
Description:
“test2-description”
PublicKeyID: 2

AddChatInvite()

Data Expected outcome from
select statement

Actual outcome from select
statement

ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1

ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1

ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

GetUser()

Data Expected outcome Actual outcome

UserID: 1 UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

Operation not allowed after
ResultSet closed

Username: MyPhoneNumber UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

Operation not allowed after
ResultSet closed

DisplayName: Nathcat UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

Operation not allowed after
ResultSet closed

129

UserID: 3 null Operation not allowed after
ResultSet closed

Username: aiwdwid null Operation not allowed after
ResultSet closed

DisplayName: Nat UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

Operation not allowed after
ResultSet closed

This error is fairly self-explanatory, we are trying to perform an operation on a ResultSet object after it
has been closed. The question is, where is it being closed? As it turns out, when we close the
Statement object in the Select method, we also close the ResultSet, so removing this line fixed this
error, but also brought up another one: Operation not allowed for a result set of type
ResultSet.TYPE_FORWARD_ONLY.

After some browsing through the documentation I found a fix for this, when we create the statement
in the Select method, we use the default constructor, which gives a default setting which means that
we can only move forward through the ResultSet, but we need to move in both directions. To allow
this, we change this line:

Statement stmt = conn.createStatement();

To this:
Statement stmt = conn.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_READ_ONLY

);

This fixed the error.

Data Expected outcome Actual outcome

UserID: 1 UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

Username: MyPhoneNumber UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

130

DisplayName: Nathcat UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

UserID: 3 null null

Username: aiwdwid null null

DisplayName: Nat UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

UserID: 1
Username: MyPhoneNumber
Password: HelloWorld1234
DisplayName: Nathcat
DateCreated: 25/07/2022
ProfilePicturePath: default.png

GetFriendship()

Data Expected outcome Actual outcome

FriendshipID: 1 FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

UserID: 1 FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

UserID: 1
FriendID: 2

FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

FriendshipID: 1
UserID: 1
FriendID: 2
DateEstablished: 25/07/2022

FriendshipID: 3 null null

UserID: 3 “” “”

UserID: 2
FriendID: 1

FriendshipID: 2
UserID: 2
FriendID: 1
DateEstablished: 25/07/2022

FriendshipID: 2
UserID: 2
FriendID: 1
DateEstablished: 25/07/2022

GetFriendRequests()

Data Expected outcome Actual outcome

131

SenderID: 1 FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659278362305

FriendRequestID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659278362305

RecipientID: 1 FriendRequestID: 2
SenderID: 2
RecipientID: 1
TimeSent: 1659278362305

FriendRequestID: 2
SenderID: 2
RecipientID: 1
TimeSent: 1659278362305

SenderID: 3 “” “”

RecipientID: 3 “” “”

GetChat()

Data Expected outcome Actual outcome

ChatID: 1 ChatID: 1
Name: test1
Description: test1-description
PublicKeyID: 1

ChatID: 1
Name: test1
Description: test1-description
PublicKeyID: 1

ChatID: 2 ChatID: 2
Name: test2
Description: test2-description
PublicKeyID: 2

ChatID: 2
Name: test2
Description: test2-description
PublicKeyID: 2

ChatID: 3 null null

GetChatInvite()

Data Expected outcome Actual outcome

ChatInviteID: 1 ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1

ChatID: 1
Name: test1
Description: test1-description
PublicKeyID: 1

ChatInviteID: 3 null null

RecipientID: 2 ChatInviteID: 1
ChatID: 1
SenderID: 1

ChatInviteID: 1
ChatID: 1
SenderID: 1

132

RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1,

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1,

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

RecipientID: 3 null null

SenderID: 1 ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1,

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

ChatInviteID: 1
ChatID: 1
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 1,

ChatInviteID: 2
ChatID: 2
SenderID: 1
RecipientID: 2
TimeSent: 1659357276989
PrivateKeyID: 2

SenderID: 3 null null

Having completed the testing process for this part of the application we can see that it functions as
expected after some changes, so this part of the development process has been successful and we can
safely move on.

Connection timeout issue
During testing I decided to have the database run for a long time, and noticed that the MySQL
connection timed out after a while. A way to fix this would be to catch any connection errors and
restart the connection to the server to ensure that it is always active. Following are the changes I made
in order to fix this issue.

133

134

Server
This part of the application will be contained within a package called com.nathcat.messagecat_server.
This is the central part of the system which accepts incoming connections from client applications and
handles requests to the database.

ListenRule
package com.nathcat.messagecat_server;

import java.io.Serializable;

import java.lang.reflect.Field;

135

/**

* A listening rule to be supplied to a client when they want to listen for actions performed

* on the server by other clients.

*

* @author Nathan "Nathcat" Baines

*/

public class ListenRule implements Serializable {

public class IDAlreadySetException extends Exception { }

private int id = -1; // Unique identifier for this listening rule

public int connectionHandlerId = -1;

public ConnectionHandler handler; // Handler which is handling the client this listen rule was created by

private RequestType listenForType; // The request type which this listen rule is listening for

// The listen rule will only be triggered if the data in fieldToMatch matches the data in objectToMatch

private String fieldNameToMatch;

private Object objectToMatch;

private Object[] objectsToMatch;

public ListenRule(ConnectionHandler handler, RequestType listenForType, String fieldNameToMatch, Object

objectToMatch) {

this.handler = handler;

this.listenForType = listenForType;

this.fieldNameToMatch = fieldNameToMatch;

this.objectToMatch = objectToMatch;

}

public ListenRule(int connectionHandlerId, RequestType listenForType, String fieldNameToMatch, Object

objectToMatch) {

this.listenForType = listenForType;

this.fieldNameToMatch = fieldNameToMatch;

this.objectToMatch = objectToMatch;

this.connectionHandlerId = connectionHandlerId;

}

public ListenRule(RequestType listenForType, String fieldNameToMatch, Object objectToMatch) {

this.listenForType = listenForType;

this.fieldNameToMatch = fieldNameToMatch;

this.objectToMatch = objectToMatch;

this.objectsToMatch = null;

}

public ListenRule(RequestType listenForType, String fieldNameToMatch, Object[] objectsToMatch) {

this.listenForType = listenForType;

this.fieldNameToMatch = fieldNameToMatch;

this.objectToMatch = null;

this.objectsToMatch = objectsToMatch;

}

public ListenRule(RequestType listenForType) {

this.listenForType = listenForType;

}

public ListenRule(int connectionHandlerId, RequestType listenForType) {

this.listenForType = listenForType;

this.connectionHandlerId = connectionHandlerId;

}

136

public int getId() {

return this.id;

}

public void setId(int id) throws IDAlreadySetException {

if (this.id != -1) {

throw new IDAlreadySetException();

}

this.id = id;

}

/**

* Checks if a request matches the listen rule's criteria, and send the request to the client if it does

* @param type The type of request

* @param data The data object to compare to

* @return True if the listen rule criteria is met, False if not.

*/

public boolean CheckRequest(RequestType type, Object data) throws NoSuchFieldException, IllegalAccessException {

if (fieldNameToMatch == null) {

return type == listenForType;

}

if (objectToMatch != null) {

return type == listenForType && data.getClass() // Compare request type to the type we are listening for

and get the class object of data

.getField(fieldNameToMatch) // Get the field we are comparing

.get(data).equals(objectToMatch); // Get the data from the field in the instance of data

and compare to objectToMatch

}

else {

boolean contains = false;

for (Object toMatch : objectsToMatch) {

if (data.getClass().getField(fieldNameToMatch).get(data).equals(toMatch)) {

contains = true;

break;

}

}

return type == listenForType && contains;

}

}

}

Handler
package com.nathcat.messagecat_server;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.lang.reflect.Field;

import java.math.BigInteger;

import java.net.*;

137

import com.nathcat.RSA.*;

/**

* Parent class for the three handler classes

*

* @author Nathan "Nathcat" Baines

*/

public class Handler extends Thread {

public Socket socket; // The TCP/IP connection socket

public ObjectOutputStream oos; // Stream to output objects to through the socket

public ObjectInputStream ois; // Stream to receive objects from the socket

public final int threadNum; // The thread number, used in debug messages

private final String className; // The name of the class to be used in debug messages

public KeyPair keyPair; // The encryption key pair to be used in communications

public KeyPair clientKeyPair; // The client's encryption key pair (will only contain the public key)

public boolean busy = false; // Indicates whether the handler is busy

public Server server; // Parent server object

public Object queueObject; // The object supplied to the handler from the QueueManager

public boolean authenticated; // Whether the connection is authenticated or not

public Socket lrSocket; // A socket specifically for communicating listen rule triggers

public ObjectOutputStream lrOos; // Stream to output objects to the lrSocket

/**

* Constructor method, assigns private and constant fields

* @param socket The TCP/IP connection socket to be used by this handler

* @param threadNum The Thread number of this handler, used in debug messages

* @param className The name of the class, used in debug messages

*/

public Handler(Socket socket, int threadNum, String className) {

this.socket = socket;

this.threadNum = threadNum;

this.className = className;

// Make this thread a daemon of the main process

// This means that this thread will quit when the main program quits.

this.setDaemon(true);

}

/**

* Starts I/O streams and creates RSA key pair

* @throws IOException Thrown by I/O operations

*/

public void InitializeIO() throws IOException {

this.oos = new ObjectOutputStream(this.socket.getOutputStream());

this.ois = new ObjectInputStream(this.socket.getInputStream());

}

/**

* Stop the handler thread using the Thread.wait() method

*/

public synchronized void StopHandler() {

try {

this.wait();

} catch (InterruptedException e) {

e.printStackTrace();

}

138

}

/**

* Create a debug log message using the identification data supplied to this handler

* @param message The message to output

*/

public void DebugLog(String message) {

System.out.println(className + " (" + threadNum + "): " + message);

}

/**

* Send an object over the socket

* @param obj The object to send

* @throws IOException Thrown if there is an I/O issue

*/

public void Send(Object obj) throws IOException {

this.oos.writeObject(obj);

this.oos.flush();

}

/**

* Send an object via the listen rule socket

* @param obj The object to send

*/

public void LrSend(Object obj) throws IOException {

lrOos.writeObject(obj);

lrOos.flush();

}

/**

* Receive an object from the socket

* @return The object that is received

* @throws IOException Thrown if there is an I/O issue

* @throws ClassNotFoundException Thrown if a requested class cannot be found

*/

public Object Receive() throws IOException, ClassNotFoundException {

return this.ois.readObject();

}

/**

* Try to close the socket

*/

public void Close() {

try {

this.socket.close();

this.lrSocket.close();

} catch (Exception e) {

this.DebugLog("Failed to close socket (" + e.getMessage() + ")");

}

boolean emptyPass = false;

while (!emptyPass) {

emptyPass = true;

for (int i = 0 ; i < this.server.listenRules.size(); i++) {

if (this.server.listenRules.get(i).handler.equals(this)) {

139

this.server.listenRules.remove(i);

emptyPass = false;

break;

}

}

}

authenticated = false;

busy = false;

}

}

ConnectionHandler
package com.nathcat.messagecat_server;

import com.nathcat.RSA.*;

import com.nathcat.messagecat_database.MessageQueue;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_database_entities.*;

import org.json.simple.JSONObject;

import java.io.IOException;

import java.io.ObjectOutputStream;

import java.net.*;

import java.security.NoSuchAlgorithmException;

import java.util.Arrays;

import java.util.Objects;

/**

* Maintains a connection with the client device

*

* @author Nathan "Nathcat" Baines

*/

public class ConnectionHandler extends Handler {

private JSONObject request;

/**

* Constructor method, assigns private and constant fields

*

* @param socket The TCP/IP connection socket to be used by this handler

* @param threadNum The Thread number of this handler, used in debug messages

*/

public ConnectionHandler(Socket socket, int threadNum) throws NoSuchAlgorithmException, IOException {

super(socket, threadNum, "ConnectionHandler");

}

/**

* This method will be executed in a different thread

*/

@Override

public void run() {

while (true) {

this.busy = false;

this.StopHandler();

140

if (this.queueObject == null) {

continue;

}

this.busy = true;

this.authenticated = false;

this.DebugLog("Assigned to task");

this.socket = (Socket) ((CloneableObject) this.queueObject).object;

try {

this.InitializeIO();

} catch (IOException e) {

this.DebugLog("Failed to initialise I/O (" + e.getMessage() + ").");

this.Close();

continue;

}

// Perform handshake

if (this.DoHandshake()) {

// Open listen rule socket

try {

int port = (int) this.keyPair.decrypt((EncryptedObject) this.Receive());

this.lrSocket = new Socket(this.socket.getInetAddress().getHostAddress(), port);

this.lrOos = new ObjectOutputStream(lrSocket.getOutputStream());

} catch (IOException | PrivateKeyException | ClassNotFoundException e) {

e.printStackTrace();

this.Close();

return;

}

// Start connection main loop

this.MainLoop();

}

else {

this.DebugLog("Handshake failed!");

this.Close();

}

}

}

/**

* Perform the handshake between the server and the client

* @return Whether the handshake was successful or not

*/

private boolean DoHandshake() {

// Try to generate an RSA key pair

try {

this.keyPair = RSA.GenerateRSAKeyPair();

} catch (NoSuchAlgorithmException e) {

this.DebugLog("Failed to generate RSA key pair! (" + e.getMessage() + ")");

this.queueObject = null;

return false;

}

141

// Perform the handshake process

boolean handshakeSuccessful = true;

// Try to send the server's public key to the client

try {

this.Send(new KeyPair(this.keyPair.pub, null));

} catch (IOException e) {

this.DebugLog(e.getMessage());

handshakeSuccessful = false;

}

// Try to receive the client's key pair

try {

this.clientKeyPair = (KeyPair) this.Receive();

} catch (IOException | ClassNotFoundException e) {

this.DebugLog(e.getMessage());

handshakeSuccessful = false;

}

// Send the connection handler identifier to the client

try {

this.Send(this.clientKeyPair.encrypt(threadNum));

} catch (IOException | PublicKeyException e) {

this.DebugLog(e.getMessage());

handshakeSuccessful = false;

}

return handshakeSuccessful;

}

/**

* The main handler loop for the connection

*/

private void MainLoop() {

while (true) {

try {

JSONObject request = (JSONObject) this.keyPair.decrypt((EncryptedObject) this.Receive());

Object response = this.HandleRequest(request);

this.Send(this.clientKeyPair.encrypt(response));

} catch (Exception e) {

this.DebugLog("Exception in main protocol: " + e.getMessage());

this.Close();

return;

}

}

}

/**

* Handle a JSON request object

* @param request The JSON request object

* @return The response object

*/

private Object HandleRequest(JSONObject request) {

142

this.request = request;

if (request == null) {

this.Close();

return null;

}

switch ((RequestType) request.get("type")) {

case Authenticate -> {

return this.Authenticate();

}

case GetUser -> {

return this.GetUser();

}

case GetFriendship -> {

return this.GetFriendship();

}

case GetFriendRequests -> {

return this.GetFriendRequests();

}

case GetChat -> {

return this.GetChat();

}

case GetChatInvite -> {

return this.GetChatInvite();

}

case GetPublicKey -> {

return this.GetPublicKey();

}

case GetMessageQueue -> {

return this.GetMessageQueue();

}

case AddUser -> {

return this.AddUser();

}

case AddChat -> {

return this.AddChat();

}

case AddListenRule -> {

return this.AddListenRule();

}

case RemoveListenRule -> {

return this.RemoveListenRule();

}

case AcceptFriendRequest -> {

143

return this.AcceptFriendRequest();

}

case DeclineFriendRequest -> {

return this.DeclineFriendRequest();

}

case AcceptChatInvite -> {

return this.AcceptChatInvite();

}

case DeclineChatInvite -> {

return this.DeclineChatInvite();

}

case SendMessage -> {

return this.SendMessage();

}

case SendFriendRequest -> {

return this.SendFriendRequest();

}

case SendChatInvite -> {

return this.SendChatInvite();

}

}

return null;

}

private Object Authenticate() {

// Get the authentication data from the request

User authData = (User) this.request.get("data");

// Get the corresponding user from the database (by username)

User user = this.server.db.GetUserByUsername(authData.Username);

// Check if the user is null (i.e. the username is incorrect)

if (user == null) {

this.authenticated = false;

return "failed";

}

else { // Check the auth data is valid

if (user.Password.contentEquals(authData.Password)) {

this.authenticated = true;

return user;

}

else {

this.authenticated = false;

return "failed";

}

}

}

private Object GetUser() {

if (!this.authenticated) {

144

return null;

}

// Get the user from the request and decrypt

User requestedUser = (User) this.request.get("data");

// Get the selector

String selector = (String) this.request.get("selector");

// Search the database and return the result

Object result = null;

if (selector.contentEquals("id")) {

result = this.server.db.GetUserByID(requestedUser.UserID);

}

else if (selector.contentEquals("username")) {

result = this.server.db.GetUserByUsername(requestedUser.Username);

}

else if (selector.contentEquals("displayName")) {

result = this.server.db.GetUserByDisplayName(requestedUser.DisplayName);

}

else {

this.DebugLog("Invalid selector!");

this.Close();

return null;

}

// Remove the password from the result/s

if (result.getClass() == User.class) {

result = new User(((User) result).UserID, ((User) result).Username, null, ((User) result).DisplayName,

((User) result).DateCreated, ((User) result).ProfilePicturePath);

}

else {

User[] uArray = (User[]) result;

for (int i = 0; i < uArray.length; i++) {

uArray[i] = new User(uArray[i].UserID, uArray[i].Username, null, uArray[i].DisplayName,

uArray[i].DateCreated, uArray[i].ProfilePicturePath);

}

result = uArray;

}

return result;

}

private Object GetFriendship() {

if (!this.authenticated) {

return null;

}

// Get the friendship from the request and decrypt

Friendship requestedFriendship = (Friendship) this.request.get("data");

// Get the selector

String selector = (String) this.request.get("selector");

// Search the database and return the result

145

Object result = null;

if (selector.contentEquals("id")) {

result = this.server.db.GetFriendshipByID(requestedFriendship.FriendshipID);

}

else if (selector.contentEquals("userID")) {

result = this.server.db.GetFriendshipByUserID(requestedFriendship.UserID);

}

else if (selector.contentEquals("userID&FriendID")) {

result = this.server.db.GetFriendshipByUserIDAndFriendID(requestedFriendship.UserID,

requestedFriendship.FriendID);

}

else {

this.DebugLog("Invalid selector!");

this.Close();

return null;

}

return result;

}

private Object GetFriendRequests() {

if (!this.authenticated) {

return null;

}

// Get the friend request from the request and decrypt it

FriendRequest requestedFriendRequest = (FriendRequest) this.request.get("data");

// Get the selector

String selector = (String) this.request.get("selector");

// Search the database and return the result

Object result = null;

if (selector.contentEquals("senderID")) {

result = this.server.db.GetFriendRequestsBySenderID(requestedFriendRequest.SenderID);

}

else if (selector.contentEquals("recipientID")) {

result = this.server.db.GetFriendRequestsByRecipientID(requestedFriendRequest.RecipientID);

}

else {

this.DebugLog("Invalid selector!");

this.Close();

return null;

}

return result;

}

private Object GetChat() {

if (!this.authenticated) {

return null;

}

// Get the chat from the request and decrypt

Chat requestedChat = (Chat) this.request.get("data");

146

// Search the database and return the result

return this.server.db.GetChatByID(requestedChat.ChatID);

}

private Object GetChatInvite() {

if (!this.authenticated) {

return null;

}

// Get the chat invite from the request and decrypt it

ChatInvite requestedChatInvite = (ChatInvite) this.request.get("data");

// Get the selector

String selector = (String) this.request.get("selector");

// Search the database and return the result

Object result = null;

if (selector.contentEquals("id")) {

result = this.server.db.GetChatInviteByID(requestedChatInvite.ChatInviteID);

}

else if (selector.contentEquals("senderID")) {

result = this.server.db.GetChatInvitesBySenderID(requestedChatInvite.SenderID);

}

else if (selector.contentEquals("recipientID")) {

result = this.server.db.GetChatInvitesByRecipientID(requestedChatInvite.RecipientID);

}

else {

this.DebugLog("Invalid selector!");

this.Close();

return null;

}

return result;

}

private Object GetPublicKey() {

if (!this.authenticated) {

return null;

}

// Get the public key id from the request

int keyID = (int) this.request.get("data");

// Get the key pair from the database

return this.server.db.GetKeyPair(keyID);

}

private Object GetMessageQueue() {

if (!this.authenticated) {

return null;

}

// Get the chat id from the request

int chatID = (int) this.request.get("data");

// Get the message queue

147

return this.server.db.GetMessageQueue(chatID);

}

private Object AddUser() {

// Get the user from the request and decrypt

User newUser = (User) this.request.get("data");

if (!Arrays.equals(this.server.db.GetUserByDisplayName(newUser.DisplayName), new User[0]) ||

this.server.db.GetUserByUsername(newUser.Username) != null) {

return null;

}

// Add the new user through the database

this.server.db.AddUser(newUser);

// Get the new user from the database and send back to the client

return this.server.db.GetUserByUsername(newUser.Username);

}

private Object AddChat() {

if (!this.authenticated) {

return null;

}

// Create a new public key

KeyPair chatKeyPair = (KeyPair) this.request.get("keyPair");

// Get the chat from the request and decrypt

Chat newChat = (Chat) this.request.get("data");

newChat = new Chat(newChat.ChatID, newChat.Name, newChat.Description, chatKeyPair.hashCode());

// Add the chat, public key, and message queue to the database

this.server.db.AddChat(newChat);

this.server.db.AddKeyPair(chatKeyPair);

// Get the chat from the database, so we know it's ID

newChat = this.server.db.GetChatByPublicKeyID(newChat.PublicKeyID);

// Create a new message queue

MessageQueue messageQueue = new MessageQueue(newChat.ChatID);

this.server.db.AddMessageQueue(messageQueue);

// Send the new chat back to the client

return this.server.db.GetChatByPublicKeyID(chatKeyPair.hashCode());

}

private Object AddListenRule() {

if (!this.authenticated) {

return null;

}

// Get the listen rule object from the request

ListenRule listenRule = (ListenRule) this.request.get("data");

// Set the listen rule handler

if (listenRule.connectionHandlerId == -1) {

listenRule.handler = this;

}

else {

148

listenRule.handler = (ConnectionHandler)

this.server.connectionHandlerPool[listenRule.connectionHandlerId];

}

try {

// Assign an id to the listen rule and add the rule to the list

listenRule.setId(this.server.listenRules.size());

this.server.listenRules.add(listenRule);

// Return the id of the listen rule

return listenRule.getId();

} catch (ListenRule.IDAlreadySetException e) {

e.printStackTrace();

return "failed";

}

}

private Object RemoveListenRule() {

if (!this.authenticated) {

return null;

}

int id = (int) this.request.get("data");

boolean found = false;

for (int i = 0; i < this.server.listenRules.size(); i++) {

if (this.server.listenRules.get(i).getId() == id) {

this.server.listenRules.remove(i);

found = true;

break;

}

}

return found ? "done" : "failed";

}

private Object AcceptFriendRequest() {

if (!this.authenticated) {

return null;

}

// Get the friend request from the request, since the data contained are all integers we do not need to

decrypt

FriendRequest fr = (FriendRequest) this.request.get("data");

// Check if this request triggers any listen rules

for (ListenRule rule : this.server.listenRules) {

try {

if (rule.CheckRequest(RequestType.AcceptFriendRequest, fr)) {

this.request.put("triggerID", rule.getId());

rule.handler.LrSend(rule.handler.clientKeyPair.encrypt(this.request));

}

} catch (IllegalAccessException | NoSuchFieldException | PublicKeyException | IOException ignored) {}

}

// Check if the two users involved are already friends

if (this.server.db.GetFriendshipByUserIDAndFriendID(fr.SenderID, fr.RecipientID) != null) {

return "done";

149

}

// Create the friend objects

Friendship friendA = new Friendship(-1, fr.SenderID, fr.RecipientID, "");

Friendship friendB = new Friendship(-1, fr.RecipientID, fr.SenderID, "");

// Add the friendships to the database

this.server.db.AddFriendship(friendA);

this.server.db.AddFriendship(friendB);

// Delete the friend requests from the database

if (this.server.db.DeleteFriendRequest(fr.FriendRequestID) == Result.FAILED) {

return "failed";

}

// Reply to the client

return "done";

}

private Object DeclineFriendRequest() {

if (!this.authenticated) {

return null;

}

// Get the friend request from the request, since the data contained are all integers we do not need to

decrypt

FriendRequest fr = (FriendRequest) this.request.get("data");

// Delete the friend requests from the database

if (this.server.db.DeleteFriendRequest(fr.FriendRequestID) == Result.FAILED) {

return "failed";

}

// Reply to the client

return "done";

}

private Object AcceptChatInvite() {

if (!this.authenticated) {

return null;

}

// Get the chat invite from the request and the private key from the database

ChatInvite ci = (ChatInvite) this.request.get("data");

KeyPair privateKey = this.server.db.GetKeyPair(ci.PrivateKeyID);

// Check if this request triggers any listen rules

for (ListenRule rule : this.server.listenRules) {

try {

if (rule.CheckRequest(RequestType.AcceptChatInvite, ci)) {

this.request.put("triggerID", rule.getId());

rule.handler.LrSend(rule.handler.clientKeyPair.encrypt(this.request));

}

} catch (IllegalAccessException | NoSuchFieldException | PublicKeyException | IOException ignored) {}

}

// Delete the chat invite from the database

150

if (this.server.db.DeleteChatInvite(ci.ChatInviteID) == Result.FAILED ||

this.server.db.RemoveKeyPair(ci.PrivateKeyID) == Result.FAILED) {

return "failed";

}

return privateKey;

}

private Object DeclineChatInvite() {

if (!this.authenticated) {

return null;

}

// Get the chat invite from the request and the private key from the database

ChatInvite ci = (ChatInvite) this.request.get("data");

// Delete the chat invite from the database

if (this.server.db.DeleteChatInvite(ci.ChatInviteID) == Result.FAILED ||

this.server.db.RemoveKeyPair(ci.PrivateKeyID) == Result.FAILED) {

return "failed";

}

return "done";

}

private Object SendMessage() {

if (!this.authenticated) {

return null;

}

// Get the message from the database

Message message = (Message) this.request.get("data");

// Check if this request triggers any listen rules

for (ListenRule rule : this.server.listenRules) {

try {

if (rule.CheckRequest(RequestType.SendMessage, message)) {

this.request.put("triggerID", rule.getId());

rule.handler.LrSend(rule.handler.clientKeyPair.encrypt(this.request));

}

} catch (IllegalAccessException | NoSuchFieldException | PublicKeyException | IOException ignored) {}

}

// Add the message to the database

this.server.db.GetMessageQueue(message.ChatID).Push(message);

this.server.db.SaveKeyAndMessageStore();

// Reply to the client

return "done";

}

private Object SendFriendRequest() {

if (!this.authenticated) {

return null;

}

// Get the friend request from the request

151

FriendRequest fr = (FriendRequest) this.request.get("data");

// Check if this request triggers any listen rules

for (ListenRule rule : this.server.listenRules) {

try {

if (rule.CheckRequest(RequestType.SendFriendRequest, fr)) {

this.request.put("triggerID", rule.getId());

rule.handler.LrSend(rule.handler.clientKeyPair.encrypt(this.request));

}

} catch (IllegalAccessException | NoSuchFieldException | PublicKeyException | IOException ignored) {}

}

// Add the request to the database

if (this.server.db.AddFriendRequest(fr) == Result.FAILED) {

return "failed";

}

return "done";

}

private Object SendChatInvite() {

if (!this.authenticated) {

return null;

}

// Get the chat invite and public key from the request

ChatInvite chatInvite = (ChatInvite) this.request.get("data");

KeyPair privateKey = (KeyPair) this.request.get("keyPair");

chatInvite = new ChatInvite(chatInvite.ChatInviteID, chatInvite.ChatID, chatInvite.SenderID,

chatInvite.RecipientID, chatInvite.TimeSent, privateKey.hashCode());

// Check if this request triggers any listen rules

for (ListenRule rule : this.server.listenRules) {

try {

if (rule.CheckRequest(RequestType.SendChatInvite, chatInvite)) {

this.request.put("triggerID", rule.getId());

rule.handler.LrSend(rule.handler.clientKeyPair.encrypt(this.request));

}

} catch (IllegalAccessException | NoSuchFieldException | PublicKeyException | IOException ignored) {}

}

// Add the chat invite and private key to the database

if (this.server.db.AddKeyPair(privateKey) == Result.FAILED || this.server.db.AddChatInvite(chatInvite) ==

Result.FAILED) {

return "failed";

}

// Reply to the client

return "done";

}

}

QueueManager
package com.nathcat.messagecat_server;

152

/**

* Handles a connection queue

*

* @author Nathan "Nathcat" Baines

*/

public class QueueManager extends Thread{

private final Server server; // The Server object

public Queue queue; // The queue assigned to this manager

private final Handler[] pool; // The handler pool assigned to this manager

/**

* Constructor method

* @param server The Server object

* @param queue The queue assigned to this manager

* @param pool The pool assigned to this manager

*/

public QueueManager(Server server, Queue queue, Handler[] pool) {

this.server = server;

this.queue = queue;

this.pool = pool;

// Make this thread a daemon to the program

// This means that this thread will quit when the program quits

this.setDaemon(true);

}

/**

* This method will be executed in a separate thread once Thread.start() method is called on this object

*/

@Override

public void run() {

while (true) {

// Get the object at the front of the queue

Object frontObj = this.queue.Pop();

// Check if the front object is null or not

if (frontObj == null) {

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

e.printStackTrace();

}

continue;

}

// Check if any of the handlers in the queue are not busy

boolean threadAvailable = false;

for (int i = 0; i < this.pool.length; i++) {

// If the current handler is not busy, assign it to the front object

if (!this.pool[i].busy) {

threadAvailable = true;

this.pool[i].queueObject = frontObj;

synchronized (this.pool[i]) {

this.pool[i].notify();

153

}

break;

}

}

// If no handler is available, push the object back into the queue

if (!threadAvailable) {

this.queue.Push(frontObj);

}

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}

}

Server
package com.nathcat.messagecat_server;

import com.nathcat.messagecat_database.Database;

import org.json.simple.JSONObject;

import org.json.simple.parser.JSONParser;

import org.json.simple.parser.ParseException;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.net.ServerSocket;

import java.net.Socket;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.Scanner;

/**

* This is Server object, it will initialise the Server and prepare the program to receive connections.

*

* @author Nathan "Nathcat" Baines

*/

public class Server {

private final int port;

private final int maxThreadCount;

public final Handler[] connectionHandlerPool;

public final QueueManager connectionHandlerQueueManager;

public final Database db;

public final ArrayList<ListenRule> listenRules = new ArrayList<>();

/**

* Constructor method

*/

154

public Server() {

this.DebugLog("Getting config file");

// Get the config file and set constant fields

JSONObject config = this.GetConfigFile();

// Define the constant fields

this.port = Integer.parseInt((String) config.get("port"));

this.maxThreadCount = Integer.parseInt((String) config.get("maxThreadCount"));

this.DebugLog("Starting database");

this.db = new Database();

this.DebugLog("Creating thread pools");

// Create the thread pools

connectionHandlerPool = new Handler[this.maxThreadCount];

this.DebugLog("Creating handlers (" + this.maxThreadCount + " handlers to create)");

// Populate the thread pools with handlers

for (int i = 0; i < this.maxThreadCount; i++) {

try {

connectionHandlerPool[i] = new ConnectionHandler(null, i);

connectionHandlerPool[i].server = this;

connectionHandlerPool[i].start();

} catch (NoSuchAlgorithmException | IOException e) {

this.DebugLog("Failed to create handler pools! (" + e.getMessage() + ")");

System.exit(1);

}

}

this.DebugLog("Starting queue managers");

// Start the queue managers

connectionHandlerQueueManager = new QueueManager(this, new Queue(), this.connectionHandlerPool);

connectionHandlerQueueManager.start();

this.DebugLog("Initial setup complete");

}

/**

* Get the server config file located at Assets/Server_Config.json

* @return A JSON object parsed from the file's contents

*/

private JSONObject GetConfigFile() {

Scanner file = null;

try {

file = new Scanner(new File("Assets/Server_Config.json"));

} catch (FileNotFoundException e) {

this.DebugLog("Couldn't find config file at \"Assets/Server_Config.json\".");

System.exit(1);

}

StringBuilder sb = new StringBuilder();

while (file.hasNextLine()) {

sb.append(file.nextLine());

155

}

try {

return (JSONObject) new JSONParser().parse(sb.toString());

} catch (ParseException e) {

this.DebugLog("JSON Syntax error present in config file (" + e.getMessage() + ").");

System.exit(1);

}

return null;

}

/**

* Output a debug message to the console

* @param message The message to output

*/

public void DebugLog(String message) {

System.out.println("Server: " + message);

}

}

/**

* This will be used with a shutdown hook so that the server is shutdown correctly when the program is terminated

*/

class ShutdownProcess extends Thread {

private final ServerSocket ss;

private final Server s;

public ShutdownProcess(ServerSocket ss, Server s) {

this.ss = ss;

this.s = s;

}

@Override

public void run() {

try {

//this.s.DebugLog(this.s.authenticationHandlerQueueManager.queue.toString());

this.s.DebugLog(this.s.connectionHandlerQueueManager.queue.toString());

//this.s.DebugLog(this.s.requestHandlerQueueManager.queue.toString());

//for (Handler h : this.s.authenticationHandlerPool) {

// System.out.print(h.busy + " ");

//}

//System.out.println();

for (Handler h : this.s.connectionHandlerPool) {

System.out.print(h.busy + " ");

}

System.out.println();

//for (Handler h : this.s.requestHandlerPool) {

// System.out.print(h.busy + " ");

//}

this.ss.close();

} catch (IOException e) {

e.printStackTrace();

}

156

}

}

Server main method
public static void main(String[] args) {

// Create a new server

Server server = new Server();

// Create a new server socket

ServerSocket serverSocket = null;

// Attempt to open the server socket

try {

serverSocket = new ServerSocket(server.port);

} catch (IOException e) {

server.DebugLog("Failed to create server socket! (" + e.getMessage() + ")");

System.exit(1);

}

assert serverSocket != null;

// Add a shutdown hook so that the server socket is correctly closed when the program is terminated

Runtime.getRuntime().addShutdownHook(new ShutdownProcess(serverSocket, server));

server.DebugLog("Server start complete, ready to receive connections!");

Socket clientSocket = null;

while (true) {

try {

// Accept any incoming connections

clientSocket = serverSocket.accept();

server.DebugLog("Received connection: " + clientSocket.getInetAddress().toString());

// Push the connection to the queue

server.connectionHandlerQueueManager.queue.Push(new CloneableObject(clientSocket));

} catch (IOException e) {

server.DebugLog("An error occurred when accepting a connection: " + e.getMessage());

}

}

}

Testing
Given that some of the functions of the server require certain data to be present in the server, it makes
sense that we test them in the following in order:

● Add user
● Authentication
● Get user
● Send friend requests
● Get friend requests
● Decline friend requests
● Accept friend requests

157

● Get friendships
● Add chat
● Get chat
● Get public key
● Send chat invite
● Get chat invites
● Decline chat invites
● Accept chat invites
● Get message queue
● Send message

Add user

Input Expected output Successful?

"data": User {

UserID=-1,

Username='12345',

Password='Oogle',

DisplayName='Herman',

DateCreated='Tue Feb 21 13:33:28

GMT 2023',

ProfilePicturePath='default.png'

},

"type": AddUser

User {

UserID=1,

Username='12345',

Password='Oogle',

DisplayName='Herman',

DateCreated='Tue Feb 21 13:33:28

GMT 2023',

ProfilePicturePath='default.png'

Yes

Authenticate

Input Expected output Successful?

"data": User {

UserID=-1,

Username='dwiejfef',

Password='adiwdjiwad',

DisplayName='null',

DateCreated='null',

ProfilePicturePath='null'

},

"type": Authenticate

failed Yes

"data": User {

UserID=-1,

Username='12345',

Password='adiwdjiwad',

DisplayName='null',

DateCreated='null',

ProfilePicturePath='null'

failed Yes

158

},

"type": Authenticate

"data": User {

UserID=-1,

Username='12345',

Password='Oogle',

DisplayName='null',

DateCreated='null',

ProfilePicturePath='null'

},

"type": Authenticate

User {

UserID=1,

Username='12345',

Password='Oogle',

DisplayName='Herman',

DateCreated='Tue Feb 21 13:33:28

GMT 2023',

ProfilePicturePath='default.png'

Yes

Get user

Input Expected output Successful?

"data": User {

UserID=5,

Username='null',

Password='null',

DisplayName='null',

DateCreated='null',

ProfilePicturePath='null'

},

"selector": "id",

"type": GetUser

null Yes

"data": User {

UserID=1,

Username='null',

Password='null',

DisplayName='null',

DateCreated='null',

ProfilePicturePath='null'

},

"selector": "id",

"type": GetUser

User {

UserID=1,

Username='12345',

Password='Oogle',

DisplayName='Herman',

DateCreated='Tue Feb 21 13:33:28

GMT 2023',

ProfilePicturePath='default.png'

Yes

"data": User {

UserID=-1,

Username='iaoaidj',

Password='null',

DisplayName='null',

DateCreated='null',

ProfilePicturePath='null'

},

"selector": "username",

"type": GetUser

null Yes

"data": User {

UserID=-1,

User {

UserID=1,
Yes

159

Username='12345',

Password='null',

DisplayName='null',

DateCreated='null',

ProfilePicturePath='null'

},

"selector": "username",

"type": GetUser

Username='12345',

Password='Oogle',

DisplayName='Herman',

DateCreated='Tue Feb 21 13:33:28

GMT 2023',

ProfilePicturePath='default.png'

"data": User {

UserID=-1,

Username='null',

Password='null',

DisplayName='dkdowo',

DateCreated='null',

ProfilePicturePath='null'

},

"selector": "displayName",

"type": GetUser

Empty array Yes

"data": User {

UserID=-1,

Username='null',

Password='null',

DisplayName='Herman',

DateCreated='null',

ProfilePicturePath='null'

},

"selector": "displayName",

"type": GetUser

[

User {

UserID=1,

Username='12345',

Password='Oogle',

DisplayName='Herman',

DateCreated='Tue Feb 21 13:33:28

GMT 2023',

ProfilePicturePath='default.png'

]

Yes

"data": User {

UserID=-1,

Username='null',

Password='null',

DisplayName='Her',

DateCreated='null',

ProfilePicturePath='null'

},

"selector": "displayName",

"type": GetUser

[

User {

UserID=1,

Username='12345',

Password='Oogle',

DisplayName='Herman',

DateCreated='Tue Feb 21 13:33:28

GMT 2023',

ProfilePicturePath='default.png'

]

Yes

Send friend request

Input Expected output Successful?

"data":FriendRequest {

FriendRequestID=-1,

SenderID=1,

RecipientID=2,

TimeSent=1677152766279

},

"type":SendFriendRequest

Done Yes

160

Get friend requests

Input Expected output Successful?

"data":FriendRequest {

FriendRequestID=-1,

SenderID=2,

RecipientID=-1,

TimeSent=-1

},

"selector":"senderID",

"type":GetFriendRequests

[] Yes

"data":FriendRequest {

FriendRequestID=-1,

SenderID=1,

RecipientID=-1,

TimeSent=-1

},

"selector":"senderID",

"type":GetFriendRequests

[FriendRequest {

FriendRequestID=1,

SenderID=1,

RecipientID=2,

TimeSent=1677152766279

}]

Yes

"data":FriendRequest {

FriendRequestID=-1,

SenderID=-1,

RecipientID=1,

TimeSent=-1

},

"selector":"recipientID",

"type":GetFriendRequests

[] Yes

"data":FriendRequest {

FriendRequestID=-1,

SenderID=-1,

RecipientID=2,

TimeSent=-1

},

"selector":"recipientID",

"type":GetFriendRequests

[FriendRequest {

FriendRequestID=1,

SenderID=1,

RecipientID=2,

TimeSent=1677152766279

}]

Yes

Decline friend request

Input Expected output Successful?

"data":FriendRequest {

FriendRequestID=1,

SenderID=-1,

Done Yes

161

RecipientID=-1,

TimeSent=-1

},

"type":DeclineFriendRequest

Accept friend request

Input Expected output Successful?

"data":FriendRequest {

FriendRequestID=2,

SenderID=-1,

RecipientID=-1,

TimeSent=-1

},

"type":AcceptFriendRequest

Done Yes

Get friendships

Input Expected output Successful?

"data": Friendship {

FriendshipID=3,

UserID=-1,

FriendID=-1,

DateEstablished=''

},

"selector":"id",

"type":GetFriendship

}

Friendship {

FriendshipID=3,

UserID=1,

FriendID=2,

DateEstablished=''

}

Yes

"data": Friendship {

FriendshipID=4,

UserID=-1,

FriendID=-1,

DateEstablished=''

},

"selector":"id",

"type":GetFriendship

}

Friendship {

FriendshipID=4,

UserID=2,

FriendID=1,

DateEstablished=''

}

Yes

Add chat

Input Expected output Successful?

"data":Chat { Chat { Yes

162

ChatID=-1,

Name='Test',

Description='Chat desc',

PublicKeyID=-1

},

"keyPair":<>,

"type":AddChat

ChatID=1,

Name='Test',

Description='Chat desc',

PublicKeyID=410716395

}

Get chat

Input Expected output Successful?

"data":Chat {

ChatID=1,

Name=null,

Description=null,

PublicKeyID=-1

},

"type":GetChat

Chat {

ChatID=1,

Name='Test',

Description='Chat desc',

PublicKeyID=410716395

}

Yes

Get public key

Input Expected output Successful?

410716395 Public key to match the one
given when making the chat.

Yes

Send chat invite

Input Expected output Successful?

"data": ChatInvite {

ChatInviteID=-1,

ChatID=1,

SenderID=1,

RecipientID=2,

TimeSent=1677243137403,

PrivateKeyID=-1

},

"keyPair":<>

Done Yes

Get chat invite

Input Expected output Successful?

163

"data": ChatInvite {

ChatInviteID=1,

ChatID=-1,

SenderID=-1,

RecipientID=-1,

TimeSent=-1,

PrivateKeyID=-1

},

"selector":"id"

"selector":GetChatInvite

ChatInvite {

ChatInviteID=1,

ChatID=1,

SenderID=1,

RecipientID=2,

TimeSent=1677243137403,

PrivateKeyID=1076397193

}

Yes

"data": ChatInvite {

ChatInviteID=-1,

ChatID=-1,

SenderID=1,

RecipientID=-1,

TimeSent=-1,

PrivateKeyID=-1

},

"selector":"senderID"

"selector":GetChatInvite

[ChatInvite {

ChatInviteID=1,

ChatID=1,

SenderID=1,

RecipientID=2,

TimeSent=1677243137403,

PrivateKeyID=1076397193

}]

Yes

"data": ChatInvite {

ChatInviteID=-1,

ChatID=-1,

SenderID=-1,

RecipientID=2,

TimeSent=-1,

PrivateKeyID=-1

},

"selector":"recipientID"

"selector":GetChatInvite

[ChatInvite {

ChatInviteID=1,

ChatID=1,

SenderID=1,

RecipientID=2,

TimeSent=1677243137403,

PrivateKeyID=1076397193

}]

Yes

"data": ChatInvite {

ChatInviteID=-1,

ChatID=-1,

SenderID=2,

RecipientID=-1,

TimeSent=-1,

PrivateKeyID=-1

},

"selector":"senderID"

"selector":GetChatInvite

[] Yes

"data": ChatInvite {

ChatInviteID=-1,

ChatID=-1,

SenderID=-1,

RecipientID=1,

TimeSent=-1,

PrivateKeyID=-1

},

"selector":"recipientID"

"selector":GetChatInvite

[] Yes

164

Decline chat invites

Input Expected output Successful?

"data":ChatInvite {

ChatInviteID=1,

ChatID=-1,

SenderID=-1,

RecipientID=-1,

TimeSent=-1,

PrivateKeyID=-1

},

"type":DeclineChatInvite

Done Yes

Accept chat invite

Input Expected output Successful?

"data":ChatInvite {

ChatInviteID=2,

ChatID=-1,

SenderID=-1,

RecipientID=-1,

TimeSent=-1,

PrivateKeyID=-1

},

"type":AcceptChatInvite

<Private key> Yes

Get message queue

Input Expected output Successful?

input: {

"data":1,

"type":GetMessageQueue

}

com.nathcat.messagecat_database.Me

ssageQueue

We don’t have a string
representation for this class so
this is all we can expect to be
returned.

Yes

Send message

Input Expected output Successful?

"data":Message { Done Yes

165

SenderID=1,

ChatID=1,

TimeSent=1677337187116,

Content='Hello world'

},

"type":SendMessage

}

Furthermore, we should be able to see this message in the message queue we requested earlier.

Implementing this test by requesting the message queue and outputting its contents results in the
following output:

[{"TimeSent":1677337187116,"Content":"Hello world","SenderID":1,"ChatID":1}, null, null,

...]

This is the expected result and clearly shows that the message we sent with the previous request has
been successfully stored on the server. In practice the content parameter would be an encrypted object
containing the encrypted contents of the message, but for the purposes of this test a string reading
Hello world is sufficient.

Client application
With the server and database complete we can continue with the implementation of the client
application. This will be contained within a package called com.nathcat.messagecat_client.

Before we begin developing the application we should also include the ServerLib.jar library, primarily
for access to the database entity classes.

166

As you can see, the ServerLib.jar library has been added to the list of dependencies for this project,
and we may now proceed.

ConnectionHandler (client)
package com.nathcat.messagecat_client;

import android.content.Context;

import android.os.Bundle;

import android.os.Handler;

import android.os.Looper;

import android.os.Message;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.net.Socket;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.List;

import com.nathcat.RSA.*;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_server.ListenRule;

import com.nathcat.messagecat_server.RequestType;

import org.json.simple.JSONObject;

/**

* Manages a connection to the server

*/

public class ConnectionHandler extends Handler {

public Socket s = null; // The socket used to connect to the server

public ObjectOutputStream oos = null; // Object output stream

public ObjectInputStream ois = null; // Object input stream

public KeyPair keyPair = null; // The client's key pair

public KeyPair serverKeyPair = null; // The server's key pair

public final Context context; // The context this handler was created in

public int connectionHandlerId; // The identifier of the connection handler this handler has connected to

public ListenRuleCallbackHandler callbackHandler;

public class ListenRuleRecord {

public final ListenRule listenRule;

public final NetworkerService.IListenRuleCallback callback;

public final Bundle bundle;

private ListenRuleRecord(ListenRule listenRule, NetworkerService.IListenRuleCallback callback, Bundle bundle)

{

this.listenRule = listenRule;

this.callback = callback;

this.bundle = bundle;

}

}

public ArrayList<ListenRuleRecord> listenRules = new ArrayList<>();

public ConnectionHandler(Context context, Looper looper) {

167

super(looper); // Handler constructor

this.context = context;

}

/**

* Send an object to the server

* @param obj The object to send

* @throws IOException Thrown in case of I/O issues

*/

public void Send(Object obj) throws IOException {

oos.writeObject(obj);

oos.flush();

}

/**

* Receive an object from the server

* @return The object received

* @throws IOException Thrown by I/O issues

* @throws ClassNotFoundException Thrown if the required class cannot be found

*/

public Object Receive() throws IOException, ClassNotFoundException {

return ois.readObject();

}

/**

* Handles messages passed to the handler.

*

* @param msg The message passed to the handler

*/

@Override

public void handleMessage(Message msg) {

// If the 'what' parameter of the message is 0, that indicates an initialisation request

// This should only occur when the service is first started

if (msg.what == 0) {

try {

// Try to connect to the server

this.s = new Socket("13.40.226.47", 1234);

this.s.setSoTimeout(20000);

this.oos = new ObjectOutputStream(s.getOutputStream());

this.ois = new ObjectInputStream(s.getInputStream());

// Create a key pair and perform the handshake

this.keyPair = RSA.GenerateRSAKeyPair();

this.serverKeyPair = (KeyPair) this.Receive();

this.Send(new KeyPair(this.keyPair.pub, null));

this.connectionHandlerId = (int) this.keyPair.decrypt((EncryptedObject) this.Receive());

System.out.println("Got handler id: " + connectionHandlerId);

int port = (int) this.keyPair.decrypt((EncryptedObject) this.Receive());

System.out.println("Got port: " + port);

callbackHandler = new ListenRuleCallbackHandler(this, keyPair, serverKeyPair, port);

callbackHandler.setDaemon(true);

callbackHandler.start();

168

} catch (IOException | NoSuchAlgorithmException | ClassNotFoundException | PrivateKeyException e) {

e.printStackTrace();

}

assert this.s != null && this.oos != null && this.ois != null && this.keyPair != null &&

this.serverKeyPair != null;

return;

}

else if (msg.what == 2) {

try {

this.oos.close();

this.ois.close();

this.s.close();

} catch (IOException e) {

e.printStackTrace();

}

this.getLooper().quit();

return;

}

// This point will only be reached if the 'what' parameter of the message is not 0

// Get the request object from the message

NetworkerService.Request request = (NetworkerService.Request) msg.obj;

if (((JSONObject) request.request).get("type") == RequestType.AddListenRule) {

NetworkerService.ListenRuleRequest lrRequest = (NetworkerService.ListenRuleRequest) request;

try {

ListenRule rule = (ListenRule) ((JSONObject) lrRequest.request).get("data");

((JSONObject) lrRequest.request).put("data", rule);

// Send the request

this.Send(this.serverKeyPair.encrypt(lrRequest.request));

// Receive the ID

int id = (int) this.keyPair.decrypt((EncryptedObject) this.Receive());

rule = (ListenRule) ((JSONObject) lrRequest.request).get("data");

rule.setId(id);

// Add the listen rule to the array along with it's callback

this.listenRules.add(new ListenRuleRecord(rule, lrRequest.lrCallback, lrRequest.bundle));

lrRequest.callback.callback(Result.SUCCESS, id);

} catch (IOException | PublicKeyException | ClassNotFoundException | PrivateKeyException |

ListenRule.IDAlreadySetException e) {

e.printStackTrace();

lrRequest.callback.callback(Result.FAILED, null);

}

}

else if (((JSONObject) request.request).get("type") == RequestType.RemoveListenRule) {

NetworkerService.ListenRuleRequest lrRequest = (NetworkerService.ListenRuleRequest) request;

try {

// Remove the listen rule from the array

for (int i = 0; i < this.listenRules.size(); i++) {

if (this.listenRules.get(i).listenRule.getId() == (int) ((JSONObject)

lrRequest.request).get("data")) {

169

this.listenRules.remove(i);

break;

}

}

// Send the request

this.Send(this.serverKeyPair.encrypt(lrRequest.request));

lrRequest.callback.callback(Result.SUCCESS, this.keyPair.decrypt((EncryptedObject) this.Receive()));

} catch (IOException | PublicKeyException | ClassNotFoundException | PrivateKeyException e) {

e.printStackTrace();

lrRequest.callback.callback(Result.FAILED, null);

}

} else {

try {

// Send the request

this.Send(this.serverKeyPair.encrypt(request.request));

// Receive the response and perform the callback from the request object

request.callback.callback(Result.SUCCESS, this.keyPair.decrypt((EncryptedObject) this.Receive()));

} catch (IOException | PublicKeyException | ClassNotFoundException | PrivateKeyException e) {

e.printStackTrace();

// Perform callback with failure code

request.callback.callback(Result.FAILED, null);

}

}

}

}

NetworkerService
package com.nathcat.messagecat_client;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.Service;

import android.content.Intent;

import android.os.Binder;

import android.os.Bundle;

import android.os.HandlerThread;

import android.os.IBinder;

import android.os.Looper;

import android.os.Message;

import android.widget.Toast;

import androidx.annotation.Nullable;

import androidx.core.app.NotificationCompat;

import androidx.core.app.NotificationManagerCompat;

import org.json.simple.JSONObject;

import org.json.simple.parser.JSONParser;

import org.json.simple.parser.ParseException;

;

import com.nathcat.messagecat_database.MessageQueue;

import com.nathcat.messagecat_database_entities.Chat;

170

import com.nathcat.messagecat_database_entities.ChatInvite;

import com.nathcat.messagecat_database_entities.FriendRequest;

import com.nathcat.messagecat_database_entities.User;

import com.nathcat.messagecat_server.ListenRule;

import com.nathcat.messagecat_server.RequestType;

import com.nathcat.messagecat_database.Result;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.io.Serializable;

import java.util.Date;

/**

* Background service used to handle networking tasks.

*

* @author Nathan "Nathcat" Baines

*/

public class NetworkerService extends Service implements Serializable {

/**

* Used to manage notifications.

* All notifications will be sent through this class

*/

public class NotificationChannel {

private final String channelName; // Name of the notification channel

private final String channelDescription; // Description of the notification channel

public NotificationChannel(String channelName, String channelDescription, int importance) {

this.channelName = channelName;

this.channelDescription = channelDescription;

// Create the notification channel

android.app.NotificationChannel channel = new android.app.NotificationChannel(this.channelName,

this.channelName, importance);

channel.setDescription(this.channelDescription);

NotificationManager notificationManager = getSystemService(NotificationManager.class);

notificationManager.createNotificationChannel(channel);

}

/**

* Create and display a notification from a given title and message.

*

* @param title The title of the notification

* @param message The message of the notification

*/

public void showNotification(String title, String message) {

NotificationCompat.Builder builder = new NotificationCompat.Builder(NetworkerService.this,

this.channelName)

.setSmallIcon(R.drawable.cat_notification)

.setContentTitle(title)

.setContentText(message)

.setPriority(Notification.PRIORITY_MAX)

.setDefaults(Notification.DEFAULT_SOUND | Notification.DEFAULT_VIBRATE);

171

NotificationManagerCompat manager = NotificationManagerCompat.from(NetworkerService.this);

manager.notify(0, builder.build());

}

}

/**

* Passed to the active ConnectionHandler, contains request object and a callback

*/

public static class Request {

public final IRequestCallback callback; // The callback to be performed when a response is received

public final Object request; // The request object

public final Bundle bundle; // External data that may be needed in the callback

public Request(IRequestCallback callback, Object request) {

this.callback = callback;

this.request = request;

this.bundle = null;

}

public Request(IRequestCallback callback, Object request, Bundle bundle) {

this.callback = callback;

this.request = request;

this.bundle = bundle;

}

}

/**

* Request callback interface.

* Implement this and pass to the Request object to create a callback

*/

public interface IRequestCallback {

default void callback(Result result, Object response) {}

}

/**

* Passed to the active ListenRuleHandler to create a new listen rule on the server

*/

public static class ListenRuleRequest extends Request {

public final IListenRuleCallback lrCallback; // Called when the listen rule is triggered

public ListenRuleRequest(IListenRuleCallback lrCallback, IRequestCallback callback, Object request) {

super(callback, request);

this.lrCallback = lrCallback;

}

public ListenRuleRequest(IListenRuleCallback lrCallback, IRequestCallback callback, Object request, Bundle

bundle) {

super(callback, request, bundle);

this.lrCallback = lrCallback;

}

}

/**

* Listen rule callback interface, called when a listen rule is triggered

*/

public interface IListenRuleCallback {

default void callback(Object response) {}

172

default void callback(Object response, Bundle bundle) {}

}

/**

* Used by the main application activity (UI thread) to get the active instance of this service

*/

public class NetworkerServiceBinder extends Binder {

/**

* Get an instance of the active service

* @return The instance of the active service

*/

NetworkerService getService() {

return NetworkerService.this;

}

}

public NotificationChannel notificationChannel; // The notification channel to be used to send notifications

public NotificationChannel serviceStatusChannel; // The notification channel used to show service notifications

private ConnectionHandler connectionHandler; // The active connection handler

private Looper connectionHandlerLooper; // The Handler looper attached to the active connection handler

public boolean authenticated = false; // Is the client currently authenticated

public boolean waitingForResponse = false; // Is the client currently waiting for a response

private final NetworkerServiceBinder binder = new NetworkerServiceBinder();

private boolean bound = false; // Is the service currently bound to the UI thread

public User user = null; // The user that is currently authenticated

public int activeChatID = -1; // The id of the chat that is currently being viewed, or -1 if

none are being viewed

/**

* Returns a binder

* @param intent The intent to bind to

* @return The binder for this service

*/

@Nullable

@Override

public IBinder onBind(Intent intent) {

bound = true;

return this.binder;

}

/**

* Unbind from another process

* @param intent The intent that just unbound from this service

* @return false, indicating to Android that the service should not try to rebind

*/

@Override

public boolean onUnbind(Intent intent) {

bound = false;

return false;

}

/**

* Called when the service is created

*/

@Override

public void onCreate() {

// Create the notification channel

173

notificationChannel = new NotificationChannel(

"MessageCat",

"Notification channel used to send notifications to the user about things that happen in the app.",

NotificationManager.IMPORTANCE_HIGH

);

serviceStatusChannel = new NotificationChannel(

"MessageCat Service",

"Used to notify the user that the MessageCat service is running",

NotificationManager.IMPORTANCE_NONE

);

startForeground(1, new Notification.Builder(this, serviceStatusChannel.channelName)

.setSmallIcon(R.drawable.cat_notification)

.setContentTitle("MessageCat")

.setContentText("MessageCat service is running")

.setPriority(Notification.PRIORITY_LOW)

.build());

startConnectionHandler();

}

@Override

public int onStartCommand(Intent intent, int flags, int startId) {

return START_STICKY;

}

/**

* Send a request to the server via the connection handler

* @param request The request object

*/

public void SendRequest(Request request) {

this.waitingForResponse = true; // Indicate that the client is waiting for a response

// Create the message to the connection handler

Message msg = connectionHandler.obtainMessage();

msg.obj = request;

msg.what = 1;

// Send the request to the connection handler to be sent off to the server

connectionHandler.sendMessage(msg);

}

@Override

public void onTaskRemoved(Intent intent) {

System.out.println("Service task removed");

}

@Override

public void onDestroy() {

System.out.println("Service destroyed");

connectionHandler.sendEmptyMessage(2);

super.onDestroy();

}

public void startConnectionHandler() {

// Create the connection handler thread

HandlerThread thread = new HandlerThread("MessageCatNetworkingHandlerThread", 10);

174

thread.start();

this.connectionHandlerLooper = thread.getLooper();

this.connectionHandler = new ConnectionHandler(this, this.connectionHandlerLooper);

// Initialise the connection to the server

connectionHandler.sendEmptyMessage(0);

// Try and find auth data

File authDataFile = new File(getFilesDir(), "UserData.bin");

if (authDataFile.exists()) {

// Try to use the data in the auth file to authenticate the client

try {

ObjectInputStream authDataInputStream = new ObjectInputStream(new FileInputStream(authDataFile));

Object userData = authDataInputStream.readObject();

authDataInputStream.close();

// Create the request and send it to the server

JSONObject requestData = new JSONObject();

requestData.put("type", RequestType.Authenticate);

requestData.put("data", userData);

// Send the authentication request

this.SendRequest(new Request(new IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

startConnectionHandler();

return;

}

if (response.getClass() == String.class) {

authenticated = false;

waitingForResponse = false;

Toast.makeText(NetworkerService.this, "Finished auth", Toast.LENGTH_SHORT).show();

return;

}

// If authentication was successful...

if (result == Result.SUCCESS) {

authenticated = true;

// Update the data in the auth file

try {

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(new

File(getFilesDir(), "UserData.bin")));

oos.writeObject(response);

oos.flush();

oos.close();

user = (User) response;

} catch (IOException e) {

e.printStackTrace();

}

// Add the notification listen rules

175

JSONObject friendRequestRuleRequest = new JSONObject();

friendRequestRuleRequest.put("type", RequestType.AddListenRule);

friendRequestRuleRequest.put("data", new ListenRule(RequestType.SendFriendRequest,

"RecipientID", user.UserID));

SendRequest(new ListenRuleRequest(new IListenRuleCallback() {

@Override

public void callback(Object response) {

// Get the friend request from the response object

FriendRequest friendRequest = (FriendRequest) ((JSONObject) response).get("data");

// Request the user that sent the request from the server

JSONObject senderRequest = new JSONObject();

senderRequest.put("type", RequestType.GetUser);

senderRequest.put("selector", "id");

senderRequest.put("data", new User(friendRequest.SenderID, null, null, null, null,

null));

SendRequest(new Request(new IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

return;

}

// Cast the response into a user object

User sender = (User) response;

// Show the notification

notificationChannel.showNotification("New friend request",

sender.DisplayName + " wants to be friends!");

}

}, senderRequest));

}

}, new IRequestCallback() {

@Override

public void callback(Result result, Object response) {

IRequestCallback.super.callback(result, response);

}

}, friendRequestRuleRequest));

JSONObject chatRequestRuleRequest = new JSONObject();

chatRequestRuleRequest.put("type", RequestType.AddListenRule);

chatRequestRuleRequest.put("data", new ListenRule(RequestType.SendChatInvite,

"RecipientID", user.UserID));

SendRequest(new ListenRuleRequest(new IListenRuleCallback() {

@Override

public void callback(Object response) {

// Get the chat invite from the request that triggered the listen rule

ChatInvite chatInvite = (ChatInvite) ((JSONObject) response).get("data");

// Create a new request to get the chat that the user has been invited to

JSONObject getChatRequest = new JSONObject();

getChatRequest.put("type", RequestType.GetChat);

getChatRequest.put("data", new Chat(chatInvite.ChatID, null, null, -1));

SendRequest(new Request(new IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

176

return;

}

// Cast the response to a Chat object

Chat chat = (Chat) response;

// Show the notification

notificationChannel.showNotification("New chat invitation", "You have been

invited to " + chat.Name);

}

}, getChatRequest));

}

}, new IRequestCallback() {

@Override

public void callback(Result result, Object response) {

IRequestCallback.super.callback(result, response);

}

}, chatRequestRuleRequest));

File chatsFile = new File(getFilesDir(), "Chats.bin");

if (chatsFile.exists()) {

try {

// Get the array of chats

ObjectInputStream ois = new ObjectInputStream(new FileInputStream(chatsFile));

Chat[] chats = (Chat[]) ois.readObject();

// Create a listen rule for each of the chats

for (Chat chat : chats) {

JSONObject msgRule = new JSONObject();

msgRule.put("type", RequestType.AddListenRule);

msgRule.put("data", new ListenRule(RequestType.SendMessage, "ChatID",

chat.ChatID));

Bundle bundle = new Bundle();

bundle.putSerializable("chat", chat);

SendRequest(new ListenRuleRequest(new IListenRuleCallback() {

@Override

public void callback(Object response, Bundle bundle) {

if (activeChatID != ((Chat) bundle.getSerializable("chat")).ChatID) {

// Create a notification

notificationChannel.showNotification("New message", "You have a

new message in " + ((Chat) bundle.getSerializable("chat")).Name);

}

}

}, new IRequestCallback() {

@Override

public void callback(Result result, Object response) {

IRequestCallback.super.callback(result, response);

}

}, msgRule, bundle));

}

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

}

}

}

177

waitingForResponse = false;

}

}, requestData));

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

}

}

}

}

AutoStartService
package com.nathcat.messagecat_client;

import android.content.BroadcastReceiver;

import android.content.Context;

import android.content.Intent;

public class AutoStartService extends BroadcastReceiver {

@Override

public void onReceive(Context context, Intent intent) {

context.startForegroundService(new Intent(context, NetworkerService.class));

//context.startService(new Intent(context, NetworkerService.class));

}

}

LoadingActivity
This is the first part of the actual GUI which I will develop. The aim of this part of the application is
to check that everything is ready for the application to run, and attempts to rectify any missing
conditions, for example it will start the Networker service if it isn’t already running, and will
authenticate the connection to the server if it isn’t already authenticated. Here is the design and
blueprint rendered by Android studio:

178

And the code:

package com.nathcat.messagecat_client;

import androidx.appcompat.app.AppCompatActivity;

import android.app.Activity;

import android.app.ActivityManager;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.IBinder;

import android.widget.Toast;

public class LoadingActivity extends AppCompatActivity {

/**

* Thread to wait for authentication to complete, if it is not already complete

*/

private class WaitForAuthThread extends Thread {

@Override

public void run() {

while (networkerService.waitingForResponse) {

try {

179

Thread.sleep(100);

} catch (InterruptedException e) {

e.printStackTrace();

}

}

if (networkerService.authenticated) {

startActivity(new Intent(LoadingActivity.this, MainActivity.class));

}

else {

startActivity(new Intent(LoadingActivity.this, NewUserActivity.class));

}

}

}

// This is used to connect to the networker service

private ServiceConnection networkerServiceConnection = new ServiceConnection() {

/**

* Called when the service connects to this process

* @param componentName Name for an application component

* @param iBinder The binder returned by the service

*/

@Override

public void onServiceConnected(ComponentName componentName, IBinder iBinder) {

// Get the service instance

networkerService = ((NetworkerService.NetworkerServiceBinder) iBinder).getService();

bound = true;

// Wait for authentication to complete

new WaitForAuthThread().start();

}

/**

* Called when the service disconnects from this process

* @param componentName Name for an application component

*/

@Override

public void onServiceDisconnected(ComponentName componentName) {

networkerService = null;

bound = false;

}

};

private NetworkerService networkerService = null; // The instance of the networker service

private boolean bound = false; // Is the service currently bound to this process

@Override

protected void onCreate(Bundle savedInstanceState) {

// This method is called when the application is opened

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_loading);

// Check if the networker service is not running

if (!isServiceRunning(NetworkerService.class)) {

// Start the foreground service

180

startForegroundService(new Intent(this, NetworkerService.class));

}

// Try to bind to the networker service

bindService(

new Intent(this, NetworkerService.class), // The intent to bind with

networkerServiceConnection, // The ServiceConnection object to use

Context.BIND_AUTO_CREATE // If the service does not already exist,

create it

);

}

/**

* Check if a service is running

* @param serviceClass The class of the service

* @return boolean

*/

private boolean isServiceRunning(Class<?> serviceClass) {

ActivityManager manager = (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);

for (ActivityManager.RunningServiceInfo service : manager.getRunningServices(Integer.MAX_VALUE)) {

if (serviceClass.getName().equals(service.service.getClassName())) {

return true;

}

}

return false;

}

}

NewUserActivity
This part of the application will allow users to create a new account, which they can then login to the
service with. Here is the design and blueprint, followed by the code:

181

package com.nathcat.messagecat_client;

import static android.Manifest.permission.READ_PHONE_NUMBERS;

import static android.Manifest.permission.READ_PHONE_STATE;

import static android.Manifest.permission.READ_SMS;

import androidx.appcompat.app.AppCompatActivity;

import androidx.core.app.ActivityCompat;

import android.content.ComponentName;

import android.content.Context;

import android.content.Intent;

import android.content.ServiceConnection;

import android.content.pm.PackageManager;

import android.os.Bundle;

import android.os.IBinder;

import android.telephony.TelephonyManager;

import android.view.View;

import android.view.WindowManager;

import android.widget.EditText;

import android.widget.ProgressBar;

import android.widget.Toast;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_database_entities.Chat;

import com.nathcat.messagecat_database_entities.ChatInvite;

import com.nathcat.messagecat_database_entities.FriendRequest;

182

import com.nathcat.messagecat_database_entities.User;

import com.nathcat.messagecat_server.ListenRule;

import com.nathcat.messagecat_server.RequestType;

import org.json.simple.JSONObject;

import java.io.File;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.nio.charset.StandardCharsets;

import java.nio.file.Files;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.Date;

public class NewUserActivity extends AppCompatActivity {

private ServiceConnection networkerServiceConnection = new ServiceConnection() {

@Override

public void onServiceConnected(ComponentName componentName, IBinder iBinder) {

networkerService = ((NetworkerService.NetworkerServiceBinder) iBinder).getService();

bound = true;

}

@Override

public void onServiceDisconnected(ComponentName componentName) {

networkerService = null;

bound = false;

}

};

private EditText displayNameEntry;

private EditText phoneNumberEntry;

private ProgressBar loadingWheel;

private String phoneNumber;

private EditText passwordEntry;

private EditText passwordRetypeEntry;

private final MessageDigest digest = MessageDigest.getInstance("SHA-256");

private NetworkerService networkerService;

private boolean bound = false;

public NewUserActivity() throws NoSuchAlgorithmException {

}

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_new_user);

loadingWheel = (ProgressBar) findViewById(R.id.newUserLoadingWheel);

loadingWheel.setVisibility(View.GONE);

bindService(

new Intent(this, NetworkerService.class),

networkerServiceConnection,

BIND_AUTO_CREATE

);

displayNameEntry = (EditText) findViewById(R.id.displayName);

183

phoneNumberEntry = (EditText) findViewById(R.id.phoneNumber);

// Get the user's phone number

TelephonyManager telephonyManager = (TelephonyManager) this.getSystemService(Context.TELEPHONY_SERVICE);

// Check if the required permissions are granted

if (ActivityCompat.checkSelfPermission(this, READ_SMS) == PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this, READ_PHONE_NUMBERS) == PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this, READ_PHONE_STATE) == PackageManager.PERMISSION_GRANTED) {

phoneNumber = telephonyManager.getLine1Number();

}

else {

// Try and request those permissions and try again

requestPermissions(new String[]{READ_SMS, READ_PHONE_NUMBERS, READ_PHONE_STATE}, 100);

if (ActivityCompat.checkSelfPermission(this, READ_SMS) == PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this, READ_PHONE_NUMBERS) == PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this, READ_PHONE_STATE) == PackageManager.PERMISSION_GRANTED) {

phoneNumber = telephonyManager.getLine1Number();

}

else {

System.exit(1);

}

}

assert phoneNumber != null;

passwordEntry = (EditText) findViewById(R.id.password);

passwordRetypeEntry = (EditText) findViewById(R.id.passwordRetype);

phoneNumberEntry.setText(phoneNumber);

}

public void onSubmitButtonClicked(View v) {

// Check if any of the fields are empty, and check that the password entries match

if (phoneNumberEntry.getText().toString().contentEquals("") ||

passwordEntry.getText().toString().contentEquals("") || passwordRetypeEntry.getText().toString().contentEquals("") ||

displayNameEntry.getText().toString().contentEquals("")) {

Toast.makeText(this, "One or more of the entry fields are empty!", Toast.LENGTH_LONG).show();

return;

}

if (!passwordEntry.getText().toString().contentEquals(passwordRetypeEntry.getText().toString())) {

Toast.makeText(this, "Passwords do not match!", Toast.LENGTH_LONG).show();

return;

}

// Hash the password

String hashedPassword = bytesToHex(digest.digest(

passwordEntry.getText().toString().getBytes(StandardCharsets.UTF_8)

));

// Block user interaction

getWindow().setFlags(WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE,

WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE);

// Show the loading wheel

loadingWheel.setVisibility(View.VISIBLE);

JSONObject request = new JSONObject();

request.put("type", RequestType.AddUser);

184

request.put("data", new User(-1, phoneNumberEntry.getText().toString(), hashedPassword,

displayNameEntry.getText().toString(), new Date().toString(), "default.png"));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

networkerService.startConnectionHandler();

runOnUiThread(() -> onSubmitButtonClicked(v));

}

// Check if the response is null

// If this is the case then the entry had duplicate data

if (response == null) {

NewUserActivity.this.runOnUiThread(() -> {

Toast.makeText(NewUserActivity.this, "Either your username or display name is already used,

try something else.", Toast.LENGTH_SHORT).show();

loadingWheel.setVisibility(View.GONE);

getWindow().clearFlags(WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE);

});

return;

}

// Write the data to the auth file

try {

ObjectOutputStream oos = new ObjectOutputStream(Files.newOutputStream(new File(getFilesDir(),

"UserData.bin").toPath()));

oos.writeObject(response);

oos.flush();

oos.close();

oos = new ObjectOutputStream(Files.newOutputStream(new File(getFilesDir(),

"Chats.bin").toPath()));

oos.writeObject(new Chat[0]);

oos.flush();

oos.close();

// Now start an authentication request and start up the loading screen

JSONObject authRequest = new JSONObject();

authRequest.put("type", RequestType.Authenticate);

authRequest.put("data", response);

// Send the auth request and start the loading activity

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback()

{

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

System.exit(1);

}

if (response.getClass() == String.class) {

networkerService.authenticated = false;

networkerService.waitingForResponse = false;

System.exit(1);

}

// If authentication was successful...

if (result == Result.SUCCESS) {

networkerService.authenticated = true;

// Update the data in the auth file

185

try {

ObjectOutputStream oos = new ObjectOutputStream(Files.newOutputStream(new

File(getFilesDir(), "UserData.bin").toPath()));

oos.writeObject(response);

oos.flush();

oos.close();

networkerService.user = (User) response;

} catch (IOException e) {

e.printStackTrace();

}

// Add the notification listen rules

JSONObject friendRequestRuleRequest = new JSONObject();

friendRequestRuleRequest.put("type", RequestType.AddListenRule);

friendRequestRuleRequest.put("data", new ListenRule(RequestType.SendFriendRequest,

"RecipientID", networkerService.user.UserID));

networkerService.SendRequest(new NetworkerService.ListenRuleRequest(new

NetworkerService.IListenRuleCallback() {

@Override

public void callback(Object response) {

// Get the friend request from the response object

FriendRequest friendRequest = (FriendRequest) ((JSONObject)

response).get("data");

// Request the user that sent the request from the server

JSONObject senderRequest = new JSONObject();

senderRequest.put("type", RequestType.GetUser);

senderRequest.put("data", new User(friendRequest.SenderID, null, null, null,

null, null));

networkerService.SendRequest(new NetworkerService.Request(new

NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

return;

}

// Cast the response into a user object

User sender = (User) response;

// Show the notification

networkerService.notificationChannel.showNotification("New friend

request", sender.DisplayName + " wants to be friends!");

}

}, senderRequest));

}

}, new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

NetworkerService.IRequestCallback.super.callback(result, response);

}

}, friendRequestRuleRequest));

JSONObject chatRequestRuleRequest = new JSONObject();

chatRequestRuleRequest.put("type", RequestType.AddListenRule);

chatRequestRuleRequest.put("data", new ListenRule(RequestType.SendChatInvite,

"RecipientID", networkerService.user.UserID));

networkerService.SendRequest(new NetworkerService.ListenRuleRequest(new

NetworkerService.IListenRuleCallback() {

@Override

public void callback(Object response) {

186

// Get the chat invite from the request that triggered the listen rule

ChatInvite chatInvite = (ChatInvite) ((JSONObject) response).get("data");

// Create a new request to get the chat that the user has been invited to

JSONObject getChatRequest = new JSONObject();

getChatRequest.put("type", RequestType.GetChat);

getChatRequest.put("data", new Chat(chatInvite.ChatID, null, null, -1));

networkerService.SendRequest(new NetworkerService.Request(new

NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

return;

}

// Cast the response to a Chat object

Chat chat = (Chat) response;

// Show the notification

networkerService.notificationChannel.showNotification("New chat

invitation", "You have been invited to " + chat.Name);

}

}, getChatRequest));

}

}, new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

NetworkerService.IRequestCallback.super.callback(result, response);

}

}, chatRequestRuleRequest));

File chatsFile = new File(getFilesDir(), "Chats.bin");

if (chatsFile.exists()) {

try {

// Get the array of chats

ObjectInputStream ois = new

ObjectInputStream(Files.newInputStream(chatsFile.toPath()));

Chat[] chats = (Chat[]) ois.readObject();

// Create a listen rule for each of the chats

for (Chat chat : chats) {

JSONObject msgRule = new JSONObject();

msgRule.put("type", RequestType.AddListenRule);

msgRule.put("data", new ListenRule(RequestType.SendMessage, "ChatID",

chat.ChatID));

Bundle bundle = new Bundle();

bundle.putSerializable("chat", chat);

networkerService.SendRequest(new NetworkerService.ListenRuleRequest(new

NetworkerService.IListenRuleCallback() {

@Override

public void callback(Object response, Bundle bundle) {

// Create a notification

networkerService.notificationChannel.showNotification("New

message", "You have a new message in " + ((Chat) bundle.getSerializable("chat")).Name);

}

}, new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

NetworkerService.IRequestCallback.super.callback(result,

response);

}

187

}, msgRule, bundle));

}

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

}

}

}

networkerService.waitingForResponse = false;

}

}, authRequest));

NewUserActivity.this.runOnUiThread(() ->

getWindow().clearFlags(WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE));

startActivity(new Intent(NewUserActivity.this, LoadingActivity.class));

} catch (IOException e) {

e.printStackTrace();

}

}

}, request));

}

/**

* Converts a byte array to a hex string. Used for hashing passwords.

* @param bytes The byte array to convert.

* @return A hex string

*/

public String bytesToHex(byte[] bytes) {

StringBuilder sb = new StringBuilder(2 * bytes.length); // Twice the length since we have two hex characters

per byte

for (byte b : bytes) {

String hex = Integer.toHexString(0xff & b);

if (hex.length() == 1) {

hex = "0" + hex;

}

sb.append(hex);

}

return sb.toString();

}

}

MainActivity
This is the main page of the application, it contains a central view which changes depending on what
the user is doing, and a drawer layout which allows them to change this central view to different
pages.

188

package com.nathcat.messagecat_client;

import android.content.ComponentName;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.IBinder;

import android.view.MenuItem;

import android.view.View;

import android.view.Menu;

import android.widget.EditText;

import android.widget.LinearLayout;

import android.widget.TextView;

import android.widget.Toast;

import com.google.android.material.snackbar.Snackbar;

import com.google.android.material.navigation.NavigationView;

import androidx.annotation.NonNull;

import androidx.fragment.app.FragmentContainerView;

import androidx.navigation.NavController;

import androidx.navigation.Navigation;

import androidx.navigation.ui.AppBarConfiguration;

import androidx.navigation.ui.NavigationUI;

import androidx.drawerlayout.widget.DrawerLayout;

import androidx.appcompat.app.AppCompatActivity;

189

import com.nathcat.RSA.EncryptedObject;

import com.nathcat.RSA.KeyPair;

;

import com.nathcat.RSA.PublicKeyException;

import com.nathcat.messagecat_client.databinding.ActivityMainBinding;

import com.nathcat.messagecat_database.KeyStore;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_database_entities.Chat;

import com.nathcat.messagecat_database_entities.ChatInvite;

import com.nathcat.messagecat_database_entities.FriendRequest;

import com.nathcat.messagecat_database_entities.Friendship;

import com.nathcat.messagecat_database_entities.Message;

import com.nathcat.messagecat_database_entities.User;

import com.nathcat.messagecat_server.ListenRule;

import com.nathcat.messagecat_server.RequestType;

import org.json.simple.JSONObject;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Date;

import java.util.HashMap;

import java.util.Random;

public class MainActivity extends AppCompatActivity {

private ServiceConnection connection = new ServiceConnection() {

@Override

public void onServiceConnected(ComponentName componentName, IBinder iBinder) {

// Get the networker service instance

networkerService = ((NetworkerService.NetworkerServiceBinder) iBinder).getService();

// Set the display name in the nav header to the user's display name

((TextView) ((NavigationView) findViewById(R.id.nav_view))

.getHeaderView(0).findViewById(R.id.displayName))

.setText(networkerService.user.DisplayName);

}

@Override

public void onServiceDisconnected(ComponentName componentName) {

networkerService = null;

}

};

public NetworkerService networkerService;

private AppBarConfiguration mAppBarConfiguration;

private ActivityMainBinding binding;

// Used on the "find people page"

private User[] searchResults;

190

// Used on the "friends" page

public User[] friends;

// Used on the invites page

public InvitationsFragment invitationsFragment;

public ArrayList<InvitationFragment> invitationFragments = new ArrayList<>();

// Used on the messaging page

public HashMap<Integer, User> users = new HashMap<>();

public MessagingFragment messagingFragment;

// Used on the chats page

public ArrayList<ChatFragment> chatFragments = new ArrayList<>();

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Bind to the networker service

bindService(

new Intent(this, NetworkerService.class),

connection,

BIND_AUTO_CREATE

);

// Set up the drawer and action bar (the bar at the top of the application)

binding = ActivityMainBinding.inflate(getLayoutInflater());

setContentView(binding.getRoot());

setSupportActionBar(binding.appBarMain.toolbar);

DrawerLayout drawer = binding.drawerLayout;

NavigationView navigationView = binding.navView;

// Passing each menu ID as a set of Ids because each

// menu should be considered as top level destinations.

mAppBarConfiguration = new AppBarConfiguration.Builder(

R.id.chatsFragment, R.id.findPeopleFragment)

.setOpenableLayout(drawer)

.build();

NavController navController = Navigation.findNavController(this, R.id.nav_host_fragment_content_main);

NavigationUI.setupActionBarWithNavController(this, navController, mAppBarConfiguration);

NavigationUI.setupWithNavController(navigationView, navController);

// Set a click listener so that the navigation drawer menu correctly navigates the available pages

((NavigationView) findViewById(R.id.nav_view)).setNavigationItemSelectedListener(item -> {

NavController navController1 = Navigation.findNavController(MainActivity.this,

R.id.nav_host_fragment_content_main);

switch (item.getItemId()) {

case R.id.nav_chats:

navController1.navigate(R.id.chatsFragment);

break;

case R.id.nav_find_people:

navController1.navigate(R.id.findPeopleFragment);

break;

191

case R.id.nav_friends:

navController1.navigate(R.id.friendsFragment);

break;

case R.id.nav_invitations:

navController1.navigate(R.id.invitationsFragment);

break;

}

return false;

});

// Set the text in the nav header to show the app is waiting for the networker service

// It is unlikely that the user will actually see this message

((TextView) ((NavigationView) findViewById(R.id.nav_view))

.getHeaderView(0).findViewById(R.id.displayName))

.setText("Waiting for networker service");

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

// Inflate the menu; this adds items to the action bar if it is present.

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

@Override

public boolean onSupportNavigateUp() {

NavController navController = Navigation.findNavController(this, R.id.nav_host_fragment_content_main);

return NavigationUI.navigateUp(navController, mAppBarConfiguration)

|| super.onSupportNavigateUp();

}

/**

* Called when the search button is clicked on the search for people page

* @param v The view that called this method

*/

public void onSearchButtonClicked(View v) {

View fragmentView = (View) v.getParent().getParent();

// Get the display name entered into the search box

String displayName = ((EditText)

fragmentView.findViewById(R.id.UserSearchBar).findViewById(R.id.userSearchDisplayNameEntry)).getText().toString();

// If the entry is empty, ask the user to enter a name and then end the method

if (displayName.contentEquals("")) {

Toast.makeText(this, "Please enter a name first!", Toast.LENGTH_SHORT).show();

return;

}

// Create a request to search users by display name

JSONObject request = new JSONObject();

request.put("type", RequestType.GetUser);

request.put("selector", "displayName");

request.put("data", new User(-1, null, null, displayName, null, null));

// Send the request

networkerService.SendRequest(new NetworkerService.Request(

new NetworkerService.IRequestCallback() {

192

@Override

public void callback(Result result, Object response) {

Runnable action;

if (result == Result.FAILED) {

action = () -> Toast.makeText(MainActivity.this, "Something went wrong :(",

Toast.LENGTH_SHORT).show();

}

else {

action = () -> {

User[] results = (User[]) response;

// Get the fragment container linear layout to add the result fragments to

LinearLayout fragmentContainerLayout =

fragmentView.findViewById(R.id.SearchResultFragmentContainer);

fragmentContainerLayout.removeAllViews();

// If the list of results is empty, hide the no results message

if (results.length == 0) {

TextView message = new TextView(MainActivity.this);

message.setText(R.string.no_search_results_message);

((LinearLayout)

fragmentView.findViewById(R.id.SearchResultFragmentContainer)).addView(message);

}

// Clean the results of invalid results

int numberRemoved = 0;

for (int i = 0; i < results.length; i++) {

// Check if this user is the logged in user

if (results[i].UserID == networkerService.user.UserID) {

results[i] = null;

numberRemoved++;

}

}

searchResults = new User[results.length - numberRemoved];

int finalIndex = 0;

for (int i = 0; i < results.length; i++) {

if (results[i] != null) {

searchResults[finalIndex] = results[i];

finalIndex++;

}

}

// Add each of the results to the fragment container layout

for (User user : searchResults) {

// Generate a random id for the fragment container

int id = new Random().nextInt();

FragmentContainerView fragmentContainer = new

FragmentContainerView(MainActivity.this);

fragmentContainer.setId(id);

// Create the argument bundle to pass to the fragment

Bundle bundle = new Bundle();

193

bundle.putSerializable("user", user);

// Add the fragment to the fragment container view

MainActivity.this.getSupportFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(id, UserSearchFragment.class, bundle)

.commit();

// Add the fragment container view to the linear layout

fragmentContainerLayout.addView(fragmentContainer);

}

};

}

// Run the predetermined action on the UI thread

MainActivity.this.runOnUiThread(action);

}

},

request));

}

/**

* Called when the button to add a friend is clicked on the search people page

* @param v The view that called the method

*/

public void onAddFriendButtonClicked(View v) {

FragmentContainerView fragmentContainerView = (FragmentContainerView) v.getParent().getParent();

LinearLayout ll = (LinearLayout) fragmentContainerView.getParent();

User user = null;

for (int i = 0; i < ll.getChildCount(); i++) {

if (fragmentContainerView.equals(ll.getChildAt(i))) {

user = searchResults[i];

}

}

assert user != null;

// Create a request to send a friend request

JSONObject request = new JSONObject();

request.put("type", RequestType.SendFriendRequest);

request.put("data", new FriendRequest(-1, networkerService.user.UserID, user.UserID, new Date().getTime()));

// Send the request to the server

networkerService.SendRequest(new NetworkerService.Request(

new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

// Notify the user of the result

if (result == Result.SUCCESS) {

MainActivity.this.runOnUiThread(() -> Toast.makeText(MainActivity.this, "Friend request

sent!", Toast.LENGTH_SHORT).show());

}

else {

MainActivity.this.runOnUiThread(() -> Toast.makeText(MainActivity.this, "Something went

wrong :(", Toast.LENGTH_SHORT).show());

194

}

}

}, request

));

}

/**

* Called when a chat invite button is clicked on the friends page

* @param v The view that called this method

*/

public void onInviteToChatClicked(View v) {

// Get the friend that was clicked

LinearLayout ll = (LinearLayout) v.getParent().getParent();

User friend = null;

for (int i = 0; i < ll.getChildCount(); i++) {

if (ll.getChildAt(i).equals(v.getParent())) {

friend = friends[i];

break;

}

}

assert friend != null;

Intent intent = new Intent(this, InviteToChatActivity.class);

Bundle bundle = new Bundle();

bundle.putSerializable("userToInvite", friend);

intent.putExtras(bundle);

startActivity(intent);

}

/**

* Called when a chat box is clicked

* @param v The view that called this method

*/

public void onChatClicked(View v) {

// Get the navigation controller for this activity

NavController navController1 = Navigation.findNavController(MainActivity.this,

R.id.nav_host_fragment_content_main);

// Create the bundle which we will pass to the messaging fragment

Bundle bundle = new Bundle();

// We now need to determine which chat was clicked

boolean found = false;

for (int i = 0; i < chatFragments.size(); i++) {

if (chatFragments.get(i).requireView().equals(v)) {

bundle.putSerializable("chat", chatFragments.get(i).chat);

found = true;

break;

}

}

assert found; // Ensure that the chat was found

// Navigate to the messaging fragment, passing the argument bundle

navController1.navigate(R.id.messagingFragment, bundle);

}

195

/**

* Called when an invite is accepted

* @param v The view that called this method

*/

public void onAcceptInviteClicked(View v) {

// Get the invite from the view that was clicked

Object invite = null;

// Iterate over the invitation fragments

for (int i = 0; i < invitationFragments.size(); i++) {

// Check if the views are the same

if (invitationFragments.get(i).requireView().equals(v.getParent())) {

// Get the invite object and exit the loop

invite = invitationFragments.get(i).invite;

break;

}

}

// Ensure that the invite is found

assert invite != null;

// Determine if the invite is a friend request or chat invite

RequestType type = (invite.getClass() == FriendRequest.class) ? RequestType.AcceptFriendRequest :

RequestType.AcceptChatInvite;

// Check if the user is already a member of this chat

if (type == RequestType.AcceptChatInvite) {

try {

ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new File(getFilesDir(),

"Chats.bin")));

Chat[] chats = (Chat[]) ois.readObject();

for (Chat chat : chats) {

if (chat.ChatID == ((ChatInvite) invite).ChatID) {

Toast.makeText(this, "You are already a member of this chat!", Toast.LENGTH_SHORT).show();

return;

}

}

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

System.exit(1);

}

}

// Create a request to accept the invite

JSONObject request = new JSONObject();

request.put("type", type);

request.put("data", invite);

Object finalInvite = invite;

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Something went wrong :(",

Toast.LENGTH_SHORT).show());

System.exit(1);

196

}

// Check if the response is a string

if (response.getClass() == String.class) {

// Output an appropriate message based on the response

if (response.equals("failed")) {

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Failed to accept invite :(",

Toast.LENGTH_SHORT).show());

}

else {

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Invite accepted!",

Toast.LENGTH_SHORT).show());

if (finalInvite.getClass() == ChatInvite.class) {

JSONObject getChatRequest = new JSONObject();

getChatRequest.put("type", RequestType.GetChat);

getChatRequest.put("data", new Chat(((ChatInvite) finalInvite).ChatID, null, null, -1));

networkerService.SendRequest(new NetworkerService.Request(new

NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

// Add a message listen rule for the new chat

JSONObject lrRequest = new JSONObject();

lrRequest.put("type", RequestType.AddListenRule);

lrRequest.put("data", new ListenRule(RequestType.SendMessage, "ChatID",

((ChatInvite) finalInvite).ChatID));

Bundle bundle = new Bundle();

bundle.putSerializable("chat", (Chat) response);

networkerService.SendRequest(new NetworkerService.ListenRuleRequest(new

NetworkerService.IListenRuleCallback() {

@Override

public void callback(Object response, Bundle bundle) {

if (networkerService.activeChatID != ((Chat)

bundle.getSerializable("chat")).ChatID) {

// Create a notification

networkerService.notificationChannel.showNotification("New message",

"You have a new message in " + ((Chat) bundle.getSerializable("chat")).Name);

}

}

}, new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

NetworkerService.IRequestCallback.super.callback(result, response);

}

}, lrRequest, bundle));

}

}, getChatRequest));

}

}

MainActivity.this.runOnUiThread(() -> invitationsFragment.reloadInvites());

}

else { // In this case the response will be a key pair, and the invite must have been a chat invite

assert finalInvite instanceof ChatInvite;

197

KeyPair privateKey = (KeyPair) response;

// Request the chat as we need it's public key id to store it in the internal key store

JSONObject chatRequest = new JSONObject();

chatRequest.put("type", RequestType.GetChat);

chatRequest.put("data", new Chat(((ChatInvite) finalInvite).ChatID, "", "", -1));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback()

{

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Something went wrong :(",

Toast.LENGTH_SHORT).show());

System.exit(1);

}

Chat chat = (Chat) response;

// Add the private key to the key store and the chat to the chats file

try {

KeyStore keyStore = new KeyStore(new File(getFilesDir(), "KeyStore.bin"));

keyStore.AddKeyPair(chat.PublicKeyID, privateKey);

ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new

File(getFilesDir(), "Chats.bin")));

Chat[] chats = (Chat[]) ois.readObject();

Chat[] newChats = new Chat[chats.length + 1];

System.arraycopy(chats, 0, newChats, 0, chats.length);

newChats[chats.length] = chat;

ois.close();

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(new

File(getFilesDir(), "Chats.bin")));

oos.writeObject(newChats);

oos.flush();

oos.close();

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Something went wrong :(",

Toast.LENGTH_SHORT).show());

System.exit(1);

}

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Invite accepted!",

Toast.LENGTH_SHORT).show());

MainActivity.this.runOnUiThread(() -> invitationsFragment.reloadInvites());

networkerService.waitingForResponse = false;

}

}, chatRequest));

}

networkerService.waitingForResponse = false;

}

198

}, request));

}

/**

* Called when an invite is declined

* @param v The view that called this method

*/

public void onDeclineInviteClicked(View v) {

// Get the invite from the view that was clicked

Object invite = null;

// Iterate over the invitation fragments

for (int i = 0; i < invitationFragments.size(); i++) {

// Check if the views are the same

if (invitationFragments.get(i).requireView().equals(v.getParent())) {

// Get the invite object and exit the loop

invite = invitationFragments.get(i).invite;

break;

}

}

// Ensure that the invite is found

assert invite != null;

// Determine if the invite is a friend request or chat invite

RequestType type = (invite.getClass() == FriendRequest.class) ? RequestType.DeclineFriendRequest :

RequestType.DeclineChatInvite;

// Create a request to decline the invite

JSONObject request = new JSONObject();

request.put("type", type);

request.put("data", invite);

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Something went wrong :(",

Toast.LENGTH_SHORT).show());

System.exit(1);

}

// Output an appropriate message based on the response

if (response.equals("failed")) {

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Failed to decline invite :(",

Toast.LENGTH_SHORT).show());

}

else {

runOnUiThread(() -> Toast.makeText(MainActivity.this, "Invite declined!",

Toast.LENGTH_SHORT).show());

}

MainActivity.this.runOnUiThread(() -> invitationsFragment.reloadInvites());

networkerService.waitingForResponse = false;

}

}, request));

199

}

/**

* Sends a message to the currently active chat

* @param v The view that called this method

*/

public void SendMessage(View v) throws IOException {

// Hide the send button and show the loading wheel

v.setVisibility(View.GONE);

((View) v.getParent()).findViewById(R.id.messageSendButtonLoadingWheel).setVisibility(View.VISIBLE);

// Get the active chat from the messaging fragment

Chat chat = messagingFragment.chat;

// Get the message from the text box

String messageContent = ((EditText) ((View)

v.getParent()).findViewById(R.id.MessageEntry)).getText().toString();

// Get the chat's public key from the server

JSONObject keyRequest = new JSONObject();

keyRequest.put("type", RequestType.GetPublicKey);

keyRequest.put("data", chat.PublicKeyID);

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED || response == null) {

MainActivity.this.runOnUiThread(() -> Toast.makeText(MainActivity.this, "Something went wrong!",

Toast.LENGTH_SHORT).show());

System.exit(1);

}

// Encrypt the message contents using the public key

assert response != null;

KeyPair publicKey = (KeyPair) response;

EncryptedObject eContent = null;

try {

eContent = publicKey.encrypt(messageContent);

} catch (PublicKeyException e) {

MainActivity.this.runOnUiThread(() -> Toast.makeText(MainActivity.this, "Something went wrong!",

Toast.LENGTH_SHORT).show());

System.exit(1);

}

assert eContent != null;

// Create the message object to send to the server

Message message = new Message(networkerService.user.UserID, chat.ChatID, new Date().getTime(),

eContent);

JSONObject sendRequest = new JSONObject();

sendRequest.put("type", RequestType.SendMessage);

sendRequest.put("data", message);

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

200

if (result == Result.FAILED || response == null) {

MainActivity.this.runOnUiThread(() -> Toast.makeText(MainActivity.this, "Something went

wrong!", Toast.LENGTH_SHORT).show());

System.exit(1);

}

runOnUiThread(() -> {

// Hide the loading wheel and show the send button

v.setVisibility(View.VISIBLE);

((View)

v.getParent()).findViewById(R.id.messageSendButtonLoadingWheel).setVisibility(View.GONE);

});

}

}, sendRequest));

}

}, keyRequest));

// Clear the text box

((EditText) ((View) v.getParent()).findViewById(R.id.MessageEntry)).setText("");

}

}

ChatsFragment
This is a page which can be displayed on the central view of the main activity, it displays the chats the
user is currently a part of.

201

package com.nathcat.messagecat_client;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

import androidx.fragment.app.Fragment;

import androidx.fragment.app.FragmentContainerView;

import androidx.fragment.app.FragmentTransaction;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.LinearLayout;

import com.nathcat.messagecat_database_entities.Chat;

import java.io.File;

import java.io.FileInputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.util.Random;

public class ChatsFragment extends Fragment {

public ChatsFragment() {

super(R.layout.fragment_chats);

202

}

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

// Inflate the layout for this fragment

return inflater.inflate(R.layout.fragment_chats, container, false);

}

@Override

public void onStart() {

super.onStart();

// Set the title on the action bar

// Otherwise it will be "fragment_chats"

((AppCompatActivity) requireActivity()).getSupportActionBar().setTitle("Chats");

Chat[] chats;

try {

((MainActivity) requireActivity()).chatFragments.clear();

} catch (ClassCastException ignored) {}

// Get the array of chats from local storage

try {

ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new

File(requireActivity().getFilesDir(), "Chats.bin")));

chats = (Chat[]) ois.readObject();

ois.close();

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

return;

}

// If there are chats to display, hide the no chats message

if (chats.length != 0) {

requireView().findViewById(R.id.noChatsMessage).setVisibility(View.GONE);

}

// Get the linear layout widget

LinearLayout chatsContainer = requireView().findViewById(R.id.ChatsContainer);

chatsContainer.removeAllViews();

for (Chat chat : chats) {

// Get a random id for the new fragment container

int containerId = new Random().nextInt();

// Create a new fragment container

FragmentContainerView fragmentContainer = new FragmentContainerView(requireContext());

fragmentContainer.setId(containerId);

// Create a new chat fragment inside the fragment container

Bundle bundle = new Bundle();

bundle.putString("chatName", chat.Name);

bundle.putString("chatDesc", chat.Description);

203

bundle.putSerializable("chat", chat);

requireActivity().getSupportFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(containerId, ChatFragment.class, bundle)

.commit();

// Add the new fragment container to the linear layout widget

chatsContainer.addView(fragmentContainer);

}

}

}

FriendsFragment
This is another page which can be displayed in the central view of the main activity, it shows all the
users this user is currently friends with.

package com.nathcat.messagecat_client;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

import androidx.fragment.app.Fragment;

204

import androidx.fragment.app.FragmentContainerView;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.LinearLayout;

import android.widget.TextView;

import android.widget.Toast;

;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_database_entities.Friendship;

import com.nathcat.messagecat_database_entities.User;

import com.nathcat.messagecat_server.RequestType;

import org.json.simple.JSONObject;

import java.util.Random;

public class FriendsFragment extends Fragment {

public FriendsFragment() {

super(R.layout.fragment_friends);

}

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

// Inflate the layout for this fragment

return inflater.inflate(R.layout.fragment_friends, container, false);

}

@Override

public void onStart() {

super.onStart();

// Set the title on the action bar

((AppCompatActivity) requireActivity()).getSupportActionBar().setTitle("Friends");

LinearLayout container = requireView().findViewById(R.id.FriendsContainer);

NetworkerService networkerService = ((MainActivity) requireActivity()).networkerService;

// Create a request to get friendships from the server

JSONObject request = new JSONObject();

request.put("type", RequestType.GetFriendship);

request.put("selector", "userID");

request.put("data", new Friendship(-1, networkerService.user.UserID, -1, null));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

requireActivity().runOnUiThread(() -> Toast.makeText(requireActivity(), "Something went wrong :(",

Toast.LENGTH_SHORT));

return;

}

205

Friendship[] friendships = (Friendship[]) response;

((MainActivity) requireActivity()).friends = new User[friendships.length];

if (friendships.length != 0) {

requireActivity().runOnUiThread(container::removeAllViews);

}

for (int i = 0; i < friendships.length; i++) {

JSONObject friendRequest = new JSONObject();

friendRequest.put("type", RequestType.GetUser);

friendRequest.put("selector", "id");

friendRequest.put("data", new User(friendships[i].FriendID, null, null, null, null, null));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback()

{

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

requireActivity().runOnUiThread(() -> Toast.makeText(requireContext(), "Something went

wrong :(", Toast.LENGTH_SHORT));

return;

}

// Add the friend to the friends array

for (int x = 0; x < ((MainActivity) requireActivity()).friends.length; x++) {

if (((MainActivity) requireActivity()).friends[x] == null) {

((MainActivity) requireActivity()).friends[x] = (User) response;

break;

}

}

Bundle bundle = new Bundle();

bundle.putSerializable("user", (User) response);

FriendsFragment.this.getChildFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(R.id.FriendsContainer, FriendFragment.class, bundle)

.commit();

networkerService.waitingForResponse = false;

}

}, friendRequest));

}

networkerService.waitingForResponse = false;

}

}, request));

}

}

FindUserFragment
This is yet another page which can be displayed in the central view of the main activity, the intention
of this page is to allow users to search for other users, who they can then add as a friend.

206

package com.nathcat.messagecat_client;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

import androidx.fragment.app.Fragment;

import androidx.fragment.app.FragmentContainerView;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.EditText;

import android.widget.LinearLayout;

import android.widget.Toast;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_database_entities.User;

import com.nathcat.messagecat_server.RequestType;

import org.json.simple.JSONObject;

import java.util.Random;

public class FindPeopleFragment extends Fragment {

207

public FindPeopleFragment() {

super(R.layout.fragment_find_people);

}

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

// Inflate the layout for this fragment

return inflater.inflate(R.layout.fragment_find_people, container, false);

}

@Override

public void onStart() {

super.onStart();

// Set the title on the action bar

((AppCompatActivity) requireActivity()).getSupportActionBar().setTitle("Find people");

}

}

InvitationsFragment
This is the final page which can be displayed in the central view of the main activity, it shows pending
invitations the user has received from their friends.

package com.nathcat.messagecat_client;

208

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

import androidx.fragment.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.LinearLayout;

import android.widget.Toast;

;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_database_entities.ChatInvite;

import com.nathcat.messagecat_database_entities.FriendRequest;

import com.nathcat.messagecat_database_entities.User;

import com.nathcat.messagecat_server.RequestType;

import org.json.simple.JSONObject;

import java.util.ArrayList;

import java.util.Arrays;

public class InvitationsFragment extends Fragment {

private ChatInvite[] chatInvites;

private FriendRequest[] friendRequests;

public InvitationsFragment() {

super(R.layout.fragment_invitations);

}

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

// Inflate the layout for this fragment

return inflater.inflate(R.layout.fragment_invitations, container, false);

}

@Override

public void onStart() {

super.onStart();

((MainActivity) requireActivity()).invitationFragments.clear();

((MainActivity) requireActivity()).invitationsFragment = this;

// Set the title on the action bar

((AppCompatActivity) requireActivity()).getSupportActionBar().setTitle("Invitations");

// Load the invites

reloadInvites();

}

/**

209

* Load the invites from the server and display them onto the page

*/

public void reloadInvites() {

// Destroy all the currently displayed invites

((LinearLayout) requireView().findViewById(R.id.InvitationsContainer)).removeAllViews();

// Remove all the invites from the main activity array

((MainActivity) requireActivity()).invitationFragments.clear();

// Get the networker service from the main activity

NetworkerService networkerService = ((MainActivity) requireActivity()).networkerService;

// Request incoming friend requests from the server

JSONObject request = new JSONObject();

request.put("type", RequestType.GetFriendRequests);

request.put("data", new FriendRequest(-1, -1, networkerService.user.UserID, -1));

request.put("selector", "recipientID");

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

requireActivity().runOnUiThread(() -> Toast.makeText(requireContext(), "Something went wrong :(",

Toast.LENGTH_SHORT).show());

System.exit(1);

}

friendRequests = (FriendRequest[]) response;

if (friendRequests.length != 0) {

requireActivity().runOnUiThread(() -> { try {

requireView().findViewById(R.id.noInvitesMessage).setVisibility(View.GONE); } catch (NullPointerException ignored) {}

});

}

for (FriendRequest fr : friendRequests) {

JSONObject userRequest = new JSONObject();

userRequest.put("type", RequestType.GetUser);

userRequest.put("selector", "id");

userRequest.put("data", new User(fr.SenderID, "", "", "", "", ""));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback()

{

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

requireActivity().runOnUiThread(() -> Toast.makeText(requireContext(), "Something went

wrong :(", Toast.LENGTH_SHORT).show());

System.exit(1);

}

User user = (User) response;

Bundle bundle = new Bundle();

bundle.putSerializable("invite", fr);

bundle.putString("text", user.DisplayName + " wants to be friends!");

getChildFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(R.id.InvitationsContainer, InvitationFragment.class, bundle)

210

.commit();

networkerService.waitingForResponse = false;

}

}, userRequest));

}

networkerService.waitingForResponse = false;

}

}, request));

// Request incoming chat requests from the server

JSONObject chatInviteRequest = new JSONObject();

chatInviteRequest.put("type", RequestType.GetChatInvite);

chatInviteRequest.put("data", new ChatInvite(-1, -1, -1, networkerService.user.UserID, -1, -1));

chatInviteRequest.put("selector", "recipientID");

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

requireActivity().runOnUiThread(() -> Toast.makeText(requireContext(), "Something went wrong :(",

Toast.LENGTH_SHORT).show());

System.exit(1);

}

chatInvites = (ChatInvite[]) response;

if (chatInvites.length != 0) {

requireActivity().runOnUiThread(() -> { try {

requireView().findViewById(R.id.noInvitesMessage).setVisibility(View.GONE); } catch (NullPointerException ignored) {}

});

}

for (ChatInvite inv : chatInvites) {

JSONObject userRequest = new JSONObject();

userRequest.put("type", RequestType.GetUser);

userRequest.put("selector", "id");

userRequest.put("data", new User(inv.SenderID, "", "", "", "", ""));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback()

{

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

requireActivity().runOnUiThread(() -> Toast.makeText(requireContext(), "Something went

wrong :(", Toast.LENGTH_SHORT).show());

System.exit(1);

}

User user = (User) response;

Bundle bundle = new Bundle();

bundle.putSerializable("invite", inv);

bundle.putString("text", user.DisplayName + " wants to chat!");

getChildFragmentManager().beginTransaction()

.setReorderingAllowed(true)

211

.add(R.id.InvitationsContainer, InvitationFragment.class, bundle)

.commit();

networkerService.waitingForResponse = false;

}

}, userRequest));

}

networkerService.waitingForResponse = false;

}

}, chatInviteRequest));

}

}

InviteToChatActivity
This activity allows users to invite a friend to a chat, they can do this by either inviting them to an
existing chat or creating a completely new one, and then inviting them to the new one, this activity
facilitates both of these cases.

By default, they will be given the option to choose an existing chat, so the program will load the chats
fragment below the existing content in the window. When the green plus button is clicked, the
program will load the create new chat fragment:

212

In place of the chats fragment.

package com.nathcat.messagecat_client;

import androidx.appcompat.app.AppCompatActivity;

import android.content.ComponentName;

import android.content.Intent;

import android.content.ServiceConnection;

import android.os.Bundle;

import android.os.IBinder;

import android.view.View;

import android.widget.EditText;

import android.widget.LinearLayout;

import android.widget.Toast;

import com.nathcat.RSA.KeyPair;

;

import com.nathcat.RSA.RSA;

import com.nathcat.messagecat_database.KeyStore;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_database_entities.Chat;

import com.nathcat.messagecat_database_entities.ChatInvite;

import com.nathcat.messagecat_database_entities.User;

213

import com.nathcat.messagecat_server.RequestType;

import org.json.simple.JSONObject;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.security.NoSuchAlgorithmException;

import java.util.Date;

public class InviteToChatActivity extends AppCompatActivity {

private ServiceConnection connection = new ServiceConnection() {

@Override

public void onServiceConnected(ComponentName componentName, IBinder iBinder) {

networkerService = ((NetworkerService.NetworkerServiceBinder) iBinder).getService();

}

@Override

public void onServiceDisconnected(ComponentName componentName) {

networkerService = null;

}

};

private NetworkerService networkerService;

private User userToInvite;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_invite_to_chat);

// Bind to the networker service

bindService(

new Intent(this, NetworkerService.class),

connection,

BIND_AUTO_CREATE

);

// The user that is being invited to a chat should be passed to this activity as a bundle

userToInvite = (User) getIntent().getSerializableExtra("userToInvite");

// Add the chats fragment view

getSupportFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(R.id.InviteToChatChatsContainer, ChatsFragment.class, null)

.commit();

}

/**

* Changes the fragment to the create new chat fragment

* @param v The view that called this method

*/

public void onAddChatButtonClicked(View v) {

214

// Change the chats fragment to the create new chat fragment

((LinearLayout) findViewById(R.id.InviteToChatChatsContainer)).removeAllViews();

getSupportFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(R.id.InviteToChatChatsContainer, CreateNewChatFragment.class, null)

.commit();

}

/**

* Sends a chat invite for the chat that was clicked

* @param v The view that called this method, this will be the chat that was clicked

*/

public void onChatClicked(View v) {

// Get the container object of the chat fragment that was clicked

LinearLayout container = (LinearLayout) v.getParent().getParent();

// Get the chats array from the file

Chat[] chats = null;

try {

ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new File(getFilesDir(), "Chats.bin")));

chats = (Chat[]) ois.readObject();

ois.close();

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

Toast.makeText(this, "Something went wrong :(", Toast.LENGTH_SHORT).show();

System.exit(1);

}

assert chats != null;

// Determine which chat was clicked

Chat chat = null;

for (int i = 0; i < container.getChildCount(); i++) {

if (container.getChildAt(i).equals(v.getParent())) {

chat = chats[i];

}

}

assert chat != null;

// Get the key pair from the key store

KeyPair pair = null;

try {

KeyStore keyStore = new KeyStore(new File(getFilesDir(), "KeyStore.bin"));

pair = keyStore.GetKeyPair(chat.PublicKeyID);

} catch (IOException e) {

e.printStackTrace();

Toast.makeText(this, "Something went wrong :(", Toast.LENGTH_SHORT).show();

System.exit(1);

}

assert pair != null;

215

// Create and send the request

JSONObject request = new JSONObject();

request.put("type", RequestType.SendChatInvite);

request.put("data", new ChatInvite(-1, chat.ChatID, networkerService.user.UserID, userToInvite.UserID, new

Date().getTime(), -1));

request.put("keyPair", new KeyPair(null, pair.pri));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

InviteToChatActivity.this.runOnUiThread(() -> Toast.makeText(InviteToChatActivity.this, "Something

went wrong :(", Toast.LENGTH_SHORT).show());

System.exit(1);

}

Toast.makeText(InviteToChatActivity.this, "Sent chat invite!", Toast.LENGTH_SHORT).show();

// Go back to the main activity

InviteToChatActivity.this.runOnUiThread(() -> startActivity(new Intent(InviteToChatActivity.this,

MainActivity.class)));

}

}, request));

}

/**

* Creates a new chat

* @param v The view that called this method

*/

public void onCreateNewChatClicked(View v) {

// Get the name and description of the new chat

View fragmentContainer = (View) v.getParent();

String chatName = ((EditText) fragmentContainer.findViewById(R.id.NewChatName)).getText().toString();

String chatDesc = ((EditText) fragmentContainer.findViewById(R.id.NewChatDesc)).getText().toString();

// Check that neither of the fields are empty before proceeding

if (chatName.contentEquals("") || chatDesc.contentEquals("")) {

Toast.makeText(this, "One or more of the required fields are empty!", Toast.LENGTH_SHORT).show();

return;

}

// Generate a new key pair for the new chat

KeyPair chatKeyPair;

try {

chatKeyPair = RSA.GenerateRSAKeyPair();

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();

return;

}

// Send the request to the server

JSONObject request = new JSONObject();

request.put("type", RequestType.AddChat);

request.put("data", new Chat(-1, chatName, chatDesc, -1));

request.put("keyPair", new KeyPair(chatKeyPair.pub, null));

216

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

InviteToChatActivity.this.runOnUiThread(() -> Toast.makeText(InviteToChatActivity.this, "Something

went wrong!", Toast.LENGTH_SHORT).show());

System.exit(1);

}

// Get the chat from the response

Chat chat = (Chat) response;

try {

// Open the chats file and read the current chat array

ObjectInputStream ois = new ObjectInputStream(new FileInputStream(new File(getFilesDir(),

"Chats.bin")));

Chat[] chats = (Chat[]) ois.readObject();

ois.close();

// Add the new chat to the array

Chat[] newChats = new Chat[chats.length + 1];

System.arraycopy(chats, 0, newChats, 0, chats.length);

newChats[chats.length] = chat;

// Write the new array to the chats file

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(new File(getFilesDir(),

"Chats.bin")));

oos.writeObject(newChats);

oos.flush();

oos.close();

// Open the key store and add the new key pair

KeyStore keyStore = new KeyStore(new File(getFilesDir(), "KeyStore.bin"));

if (keyStore.AddKeyPair(chat.PublicKeyID, chatKeyPair) == Result.FAILED) {

InviteToChatActivity.this.runOnUiThread(() -> Toast.makeText(InviteToChatActivity.this,

"Something went wrong!", Toast.LENGTH_SHORT).show());

System.exit(1);

}

} catch (IOException | ClassNotFoundException e) {

e.printStackTrace();

InviteToChatActivity.this.runOnUiThread(() -> Toast.makeText(InviteToChatActivity.this, "Something

went wrong!", Toast.LENGTH_SHORT).show());

System.exit(1);

}

// Send a chat invite

JSONObject inviteRequest = new JSONObject();

inviteRequest.put("type", RequestType.SendChatInvite);

inviteRequest.put("data", new ChatInvite(-1, chat.ChatID, networkerService.user.UserID,

userToInvite.UserID, new Date().getTime(), -1));

inviteRequest.put("keyPair", new KeyPair(null, chatKeyPair.pri));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

217

if (result == Result.FAILED) {

InviteToChatActivity.this.runOnUiThread(() -> Toast.makeText(InviteToChatActivity.this,

"Something went wrong!", Toast.LENGTH_SHORT).show());

System.exit(1);

}

InviteToChatActivity.this.runOnUiThread(new Runnable() {

@Override

public void run() {

Toast.makeText(InviteToChatActivity.this, "Sent chat invite!",

Toast.LENGTH_SHORT).show();

// Go back to the main activity

InviteToChatActivity.this.runOnUiThread(() -> startActivity(new

Intent(InviteToChatActivity.this, MainActivity.class)));

}

});

}

}, inviteRequest));

}

}, request));

}

}

MessagingFragment
This page is loaded when a chat is clicked on the chats fragment page, it allows users to send
messages to a chat, and view old messages in that chat.

218

Your messages will appear in purple, like this:

While other user’s messages will appear in green.

package com.nathcat.messagecat_client;

import android.os.Bundle;

import androidx.appcompat.app.AppCompatActivity;

import androidx.fragment.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import android.widget.LinearLayout;

import android.widget.ScrollView;

import android.widget.Toast;

import com.nathcat.RSA.EncryptedObject;

import com.nathcat.RSA.KeyPair;

;

219

import com.nathcat.RSA.PrivateKeyException;

import com.nathcat.messagecat_database.KeyStore;

import com.nathcat.messagecat_database.MessageQueue;

import com.nathcat.messagecat_database.Result;

import com.nathcat.messagecat_database_entities.Chat;

import com.nathcat.messagecat_database_entities.Message;

import com.nathcat.messagecat_database_entities.User;

import com.nathcat.messagecat_server.ListenRule;

import com.nathcat.messagecat_server.RequestType;

import org.json.simple.JSONObject;

import org.json.simple.parser.JSONParser;

import org.json.simple.parser.ParseException;

import java.io.File;

import java.io.IOException;

import java.util.Arrays;

import java.util.HashMap;

public class MessagingFragment extends Fragment {

public Chat chat;

private KeyPair privateKey;

private NetworkerService networkerService;

private MessageQueue messageQueue;

private int listenRuleId = -1;

public MessagingFragment() {

super(R.layout.fragment_messaging);

}

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Get the chat argument passed to this fragment, and the networker service instance from

// the main activity

chat = (Chat) requireArguments().getSerializable("chat");

networkerService = ((MainActivity) requireActivity()).networkerService;

}

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

// Inflate the layout for this fragment

return inflater.inflate(R.layout.fragment_messaging, container, false);

}

@Override

public void onStart() {

super.onStart();

// Set the title on the action bar

((AppCompatActivity) requireActivity()).getSupportActionBar().setTitle(chat.Name);

// Hide the loading wheel under the send button

requireView().findViewById(R.id.messageSendButtonLoadingWheel).setVisibility(View.GONE);

220

((MainActivity) requireActivity()).messagingFragment = this;

try {

KeyStore keyStore = new KeyStore(new File(requireActivity().getFilesDir(), "KeyStore.bin"));

privateKey = keyStore.GetKeyPair(MessagingFragment.this.chat.PublicKeyID);

} catch (IOException e) {

e.printStackTrace();

}

assert privateKey != null;

((MainActivity) requireActivity()).networkerService.activeChatID = this.chat.ChatID;

// Create the users hashmap and put the current user in it

((MainActivity) requireActivity()).users.put(networkerService.user.UserID, networkerService.user);

networkerService.waitingForResponse = false;

// Request the message queue from the server

JSONObject request = new JSONObject();

request.put("type", RequestType.GetMessageQueue);

request.put("data", chat.ChatID);

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

// Check if the request failed

if (result == Result.FAILED || response == null) {

requireActivity().runOnUiThread(() -> Toast.makeText(requireContext(), "Something went wrong :(",

Toast.LENGTH_SHORT).show());

return;

}

// Assign the message queue to the field

System.out.println(response);

messageQueue = (MessageQueue) response;

// Call the update message box function on the UI thread

// Passing the instance of the fragment class as a parameter

try {

requireActivity().runOnUiThread(() ->

MessagingFragment.updateMessageBoxStart(MessagingFragment.this, privateKey));

// Hide the loading wheel

requireActivity().runOnUiThread(() ->

requireView().findViewById(R.id.messagingLoadingWheel).setVisibility(View.GONE));

} catch (IllegalStateException e) {

System.out.println("Message window was closed!");

return;

}

networkerService.waitingForResponse = false;

}

}, request));

221

// Create the listen rule for messages in this chat

ListenRule listenRule = new ListenRule(RequestType.SendMessage, "ChatID", this.chat.ChatID);

JSONObject listenRuleRequest = new JSONObject();

listenRuleRequest.put("type", RequestType.AddListenRule);

listenRuleRequest.put("data", listenRule);

networkerService.SendRequest(new NetworkerService.ListenRuleRequest(new NetworkerService.IListenRuleCallback()

{

@Override

public void callback(Object response) {

updateMessageBox((Message) ((JSONObject) response).get("data"));

}

}, new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

System.out.println("Failed to create listen rule");

System.exit(1);

}

listenRuleId = (int) response;

}

}, listenRuleRequest));

}

@Override

public void onStop() {

super.onStop();

JSONObject request = new JSONObject();

request.put("type", RequestType.RemoveListenRule);

request.put("data", listenRuleId);

networkerService.SendRequest(new NetworkerService.ListenRuleRequest(new NetworkerService.IListenRuleCallback()

{

@Override

public void callback(Object response) {

NetworkerService.IListenRuleCallback.super.callback(response);

}

}, new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

NetworkerService.IRequestCallback.super.callback(result, response);

}

}, request));

((MainActivity) requireActivity()).networkerService.activeChatID = -1;

}

/**

* Updates the messagebox with the current contents of the message queue

* @param fragment The instance of the current fragment class, this is necessary as this method will mostly be

called from a Runnable, which is a static context

*/

public static void updateMessageBoxStart(MessagingFragment fragment, KeyPair privateKey) {

fragment.networkerService.waitingForResponse = false;

222

// Remove all messages currently in the messagebox

fragment.requireActivity().runOnUiThread(() -> ((LinearLayout)

fragment.requireView().findViewById(R.id.MessageBox)).removeAllViews());

// Add the new messages

for (int i = 0; i < 50; i++) {

while (fragment.networkerService.waitingForResponse) {

System.out.println("Waiting for response");

}

Message message = fragment.messageQueue.Get(i);

if (message == null) {

continue;

}

// If the user that sent the message is not currently in the hashmap, request the user from the server and

add them

// Then we can add the message

if (((MainActivity) fragment.requireActivity()).users.get(message.SenderID) == null) {

JSONObject request = new JSONObject();

request.put("type", RequestType.GetUser);

request.put("selector", "id");

request.put("data", new User(message.SenderID, null, null, null, null, null));

fragment.networkerService.SendRequest(new NetworkerService.Request(new

NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

((MainActivity) fragment.requireActivity()).users.put(((User) response).UserID, (User)

response);

// Decrypt the message before passing it to the fragment

String content = null;

try {

content = (String) privateKey.decrypt((EncryptedObject) message.Content);

} catch (PrivateKeyException e) {

e.printStackTrace();

System.exit(1);

}

// Create a new message object with the decrypted contents

Message decryptedMessage = new Message(message.SenderID, message.ChatID, message.TimeSent,

content);

// Add the message to the view as a fragment

Bundle bundle = new Bundle();

bundle.putSerializable("message", decryptedMessage);

bundle.putBoolean("fromOtherUser", message.SenderID != fragment.networkerService.user.UserID);

fragment.getChildFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(R.id.MessageBox, MessageFragment.class, bundle)

.commit();

fragment.networkerService.waitingForResponse = false;

223

}

}, request));

}

else {

// Decrypt the message contents

String content = null;

try {

content = (String) privateKey.decrypt((EncryptedObject) message.Content);

} catch (PrivateKeyException e) {

e.printStackTrace();

System.exit(1);

}

// Add the message to the view as a fragment

Bundle bundle = new Bundle();

bundle.putSerializable("message", new Message(message.SenderID, message.ChatID, message.TimeSent,

content));

bundle.putBoolean("fromOtherUser", message.SenderID != fragment.networkerService.user.UserID);

fragment.getChildFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(R.id.MessageBox, MessageFragment.class, bundle)

.commit();

}

}

// Scroll to the bottom of the scroll view

((ScrollView) fragment.requireView().findViewById(R.id.MessageBoxScrollView)).fullScroll(View.FOCUS_DOWN);

}

/**

* Updates the message box with the current contents of the chat following the listen rule architecture

*/

public void updateMessageBox(Message newMessage) {

// If the user that sent the message is not currently in the hashmap, request the user from the server and add

them

// Then we can add the message

if (((MainActivity) requireActivity()).users.get(newMessage.SenderID) == null) {

JSONObject request = new JSONObject();

request.put("type", RequestType.GetUser);

request.put("selector", "id");

request.put("data", new User(newMessage.SenderID, null, null, null, null, null));

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

((MainActivity) requireActivity()).users.put(((User) response).UserID, (User) response);

// Decrypt the message before passing it to the fragment

String content = null;

try {

content = (String) privateKey.decrypt((EncryptedObject) newMessage.Content);

} catch (PrivateKeyException e) {

e.printStackTrace();

System.exit(1);

224

}

// Create a new message object with the decrypted contents

Message decryptedMessage = new Message(newMessage.SenderID, newMessage.ChatID,

newMessage.TimeSent, content);

// Add the message to the view as a fragment

Bundle bundle = new Bundle();

bundle.putSerializable("message", decryptedMessage);

bundle.putBoolean("fromOtherUser", newMessage.SenderID != networkerService.user.UserID);

getChildFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(R.id.MessageBox, MessageFragment.class, bundle)

.commit();

// Scroll to the bottom of the scroll view

requireActivity().runOnUiThread(() -> ((ScrollView)

requireView().findViewById(R.id.MessageBoxScrollView)).fullScroll(View.FOCUS_DOWN));

}

}, request));

}

else {

// Decrypt the contents of the message

String content = null;

try {

content = (String) privateKey.decrypt((EncryptedObject) newMessage.Content);

} catch (PrivateKeyException e) {

e.printStackTrace();

System.exit(1);

}

// Add the message to the view as a fragment

Bundle bundle = new Bundle();

bundle.putSerializable("message", new Message(newMessage.SenderID, newMessage.ChatID, newMessage.TimeSent,

content));

bundle.putBoolean("fromOtherUser", newMessage.SenderID != networkerService.user.UserID);

getChildFragmentManager().beginTransaction()

.setReorderingAllowed(true)

.add(R.id.MessageBox, MessageFragment.class, bundle)

.commit();

}

}

}

Testing
In order to test this application I will be using a virtual machine running android 12.

LoadingActivity

Test Expected outcome Was this outcome achieved?

Load the application without a Redirected from the Yes

225

preexisting user account. LoadingActivity to the
NewUserActivity.

Load the application with a
preexisting user account.

Directed straight to the
MainActivity.

Yes

Load the application with an
already authenticated
connection running in the
NetworkerService

Directed straightMainActivity
immediately.

No - The program hangs on the
LoadingActivity.

After inspecting the code I noticed I missed a condition from theWaitForAuthThread process in the
LoadingActivity, which checks if the connection is already authenticated when the application binds to
the service. The following condition does this.

if (networkerService.authenticated) {

startActivity(new Intent(LoadingActivity.this, MainActivity.class));

}

This fixed the issue and the LoadingActivity no longer hangs.

Furthermore, I noticed that the listen rules set during the setup phase of the application were not
appearing on the server, and that the listen rule sockets do not appear to be connecting properly. I
figured this was due to the fact that I was having the server connect to the client, so a more
appropriate way of doing this might be to have the client create a new connection to the server. This
lead to the following changes in the server’s ConnectionHandler class:

226

Hence resolving the issue.

NewUserActivity

Test Expected outcome Was this outcome achieved?

Entered the following data into
the appropriate fields:

Phone number (autofilled):
+155583634682

Display name: Nathcat1234😂

Password: OogleBop!4321
Password retype:
OogleBop!4321

New user created on server and
app is redirected to the loading
activity, which follows onto the
main activity.

No

Entered the following data into
the appropriate fields:

Phone number (autofilled):
+155583634682

Display name: Nathcat1234😂

Password: OogleBop!4321
Password retype: awadwad

Message is displayed asking
the user to retype their
password since the entries do
not match

Yes

The NewUserActivity did not redirect the user to theMainActivity. After reading through my code for
the authentication section in this class, I discovered that it was setting the NetworkerService’s
waitingForResponse field to false and then loading the LoadingActivity, this meant that the
LoadingActivity saw the service not waiting for a response from the server, and the fact that
connection was not yet authenticated, since the request wouldn’t have gone through yet, so the
LoadingActivity, as it should in that situation, loaded the NewUserActivity. The authentication request
in general was also slightly incorrect. Following is the list of changes I made to rectify this issue,
displayed in GitHub’s difference format. All changes were to NewUserActivity.

227

After these changes were made, the issue was resolved and the NewUserActivity functioned as
expected.

MainActivity

Test Expected outcome Was this outcome achieved?

Clicking on the chats page Loads the ChatsFragment. Yes

Clicking on the friends page Loads the FriendsFragment. Yes

Clicking on the invitations
page

Loads the InvitationsFragment. Yes

228

Clicking on the find people
page.

Loads the FindUserFragment. Yes

FindPeopleFragment

Test Expected outcome Was this outcome achieved?

Search an existing username in
full:

“I do not exist”

Shows the desired user Yes

Search an existing username
missing the end:

“I do“

Shows the desired user Yes

Search for my own username Shows no results Yes

Search for a username which
does not exist.

Shows no results Yes

Search with an empty
username

Shows message asking you to
enter a username first

Yes

InvitationsFragment

Test Expected outcome Was this outcome achieved?

Decline a request The request is deleted with no
further actions

Yes

Accept a request The request is accepted:
● If a friend request, a

new friend should be
added to the friends
page.

● If a chat request, a new
chat should be added
in the chats page.

Yes, to both friend and chat
requests.

InviteToChatActivity

Test Expected outcome Was this outcome achieved?

Invite a user to a new chat,
testing that the entry fields will
not accept no values.

A message should be shown
when an empty input is
detected asking the user to
enter a value. Past this a chat
request should be sent to the
recipient.

Yes, all points were met. The
chat request was sent with
valid input, and a message was
shown when empty inputs were
detected.

229

Invite a user to an existing chat A chat request should be sent
to the recipient.

Yes

FriendsFragment

Test Expected outcome Was this outcome achieved?

Click on the button on a friend
record, then proceed to create
an invite.

The friend that was clicked
should be sent a chat invite to
the chat the user just invited
them to.

Yes

ChatsFragment

Test Expected outcome Was this outcome achieved?

Click on chats in the page The messaging fragment
should open

Yes

MessagingFragment

Test Expected outcome Was this outcome achieved?

Is the chat information the
same as the one that was
clicked? Is the past message
history viewable (up to 10
messages)?

Yes Yes

Send a message with normal
characters

Should send the message into
chat, displayed in purple.

Yes

Send a message with special
characters

Should send the message into
the chat, displayed in purple.

Yes

Send a message with no
characters

Should not send the message. No

Receive a message with normal
characters

Should see the message
displayed in green with the
correct username above it.

Yes

Receive a message with special
characters

Should see the message
displayed in green with the
correct username above it.

Yes

Receive a message with no
characters

Should not see any message
displayed.

No

I clearly neglected to implement a validation check for no characters when implementing this part of
the application, I don’t think this is a serious problem, something I can fix pretty easily.

230

Simply adding the following if statement to the send message method in the main activity fixed this
issue, it just checks if the content of the message is empty before proceeding, if it is it displays a
message to the user and ends the method, if it is not empty then it proceeds with the rest of the
function.

// Ensure that the message is not empty before proceeding

if (messageContent.equals("")) {

Toast.makeText(this, "Please enter a message first!", Toast.LENGTH_SHORT).show();

return;

}

Notifications

Test Expected outcome Was this outcome achieved?

Send friend request The user receiving the request
should get a notification with
the name of the user that has
sent them a friend request,
regardless of the page of the
application they are on and
whether or not the application
is open.

Yes

Send chat request The user receiving the request
should get a notification with
the name of the chat they have
been invited to, they should
receive this application
regardless of whether or not the
application is open.

Yes

Send message (application
open)

The user should only receive a
notification if the chat the
notification is for is not
currently open in the
application, otherwise no
notification should be shown.
The notification should show
the name of the chat that the
message was sent to.

Yes, but only after the
application was restarted after
having accepted the chat
invitation.

Send message (application
closed)

The user should always receive
notifications when new
messages are sent into chats.
Again, these notifications
should contain the name of the
chats.

Yes, same as above.

231

Evaluation
At this point I have completed the implementation of the initial application and it is time to begin to
evaluate what I have accomplished during this process.

This section will begin with the end user testing of the application, this will allow us to gain a better
understanding of how people respond to the application, and their unbiased opinion will give me a
good insight on how I should proceed with further development in the future.

Android 13
Before I was able to begin end user testing, Google began rolling out Android 13 to existing Android
devices. Reading into some of the changes that were made in this update I felt fairly confident that the
application would not suffer any functionality issues as a result, most of the changes were around
services and background tasks, but from what I understood they should not affect this application, but
I decided to conduct white-box testing again to ensure that this was the case.

I noticed that while the application was open and running with the GUI, the networker service
functioned exactly as expected, as it did in Android 12, however it immediately closed when the
application’s GUI was closed. This may be as a result of the way that services and the UI thread work
together in terms of processes, unless otherwise specified in the program, a service will execute in the
same process as the UI thread, so when the UI thread is closed, this process is killed, along with the
service. I cannot say that this is certainly the case, since as far as I am aware this was the case in
Android 12 but it did not appear to affect the application, perhaps Android 13 simply enforces this rule
more ruthlessly upon applications.

In any case this leads to the user not receiving any notifications while the application is closed, which
is clearly a problem, since they will then not be aware of any incoming messages or friend / chat
requests, so this is a problem I must fix.

The obvious fix is to explicitly state that the networker service should execute in another process; this
can be done in the Android manifest file, which describes various properties of the application for the
OS’ use. However this then means that I would have to create an Inter-process communication
interface, which is a lot of hassle and would likely involve a lot of changes to the already existing
code base, which is something I would like to avoid wherever possible, since that was the point of
using a modular design in the application.

However, in investigating this approach further, I discovered that the Android SDK provides a method
for Inter-process communication without having to write an AIDL interface, which makes use of
Messengers and Handlers. I implemented this in a test application and tested it in an Android 13
Virtual Machine and the service did appear to run even after the GUI was closed, so this approach
may be viable. The only problem is that it will require significant changes to the networker service at
the very least, potentially some of the rest of the application.

I believe that this is an acceptable sacrifice, especially since there are other potential benefits to this
approach which can be explored in future development, although I won’t do anything with them here
as my priority in this project is to have the application functioning as expected.

232

After attempting to implement this fix, I have realised that the changes required to make this work
would fundamentally change the application and at this point in the project I don’t believe it would be
viable to attempt to continue the implementation on the existing code base. Implementing this fix
would require near enough a completely new implementation, which is something I don’t have time
for at this stage.

The problem that made me realise this was a serialisation error. I started implementing the fix by
separating the networker service into its own process, and then re-creating the interface between the
UI process and the networker service process to use Android’s inter process communication methods.
I did manage to complete this, and the service was able to function properly, connecting to the server
as expected, and continuing to execute even when the UI process was killed. However, when I began
to change the UI process’ code to use the new interface I encountered a significant number of issues.

The system I had in place originally used a system of callbacks, these callback functions were passed
to the networker service along with the request data, and once the request was completed the
connection handler would call the callback function, passing in the result code and the response data
from the server. These callback functions often use the context of the class they were created in to
perform various tasks. For example, in the new user activity, when the user clicks the submit button,
the callback function which is called when the new user request completes loads a new activity, using
a method which is declared in the parent class of NewUserActivity. This kind of context management
is handled by Java for us. This works in the original implementation since the context data does not
have to be passed over a process, requiring serialisation. Now that the networker service is in a
different process, in order to pass the request data and callback to the service for it to be handled, it
must be serialised. During this process, Java takes the context the callback method executes in and
serialises it with the rest of the data. So in the new user activity example, the entire NewUserActivity
class is serialised, this is a problem since the NewUserActivity class, along with all of my activity
classes, is not serialisable, and contains data which is not serialisable, hence the program throws a
NotSerializableException.

One thought I had to fix this would be to create an area of shared memory, which could contain all of
the contextual data required for the callback function, but because of the way I have declared the
callback function I cannot avoid the NewUserActivity being serialised with it.

In any case, the changes to the code base that fixing this problem would require is simply too much to
complete within the time frame. It would require fundamental changes to the way the application
functions, which is something that I do not have the time for at this stage in the project.

Despite this I feel I should point out that the application still functions as expected on Android 12, and
it is only new versions of Android that it does not work with.

Here is an example of the problem:

networkerService.SendRequest(new NetworkerService.Request(new NetworkerService.IRequestCallback() {

@Override

public void callback(Result result, Object response) {

if (result == Result.FAILED) {

networkerService.startConnectionHandler();

233

runOnUiThread(() -> onSubmitButtonClicked(v));

}

// Check if the response is null

// If this is the case then the entry had duplicate data

if (response == null) {

NewUserActivity.this.runOnUiThread(() -> {

Toast.makeText(NewUserActivity.this, "Either your username or display name is already used,

try something else.", Toast.LENGTH_SHORT).show();

loadingWheel.setVisibility(View.GONE);

getWindow().clearFlags(WindowManager.LayoutParams.FLAG_NOT_TOUCHABLE);

});

return;

}

// Write the data to the auth file

// ...

This is a sample of code from the NewUserActivity class, it sends a network request through the
NetworkerService to create a new user account, then writes the new user data to the authentication
data file on the local storage system.

All of the highlighted lines are examples of contextual execution. This code is located in a callback
method, which is executed by the ConnectionHandler when the network request has completed and a
response has been received from the server, the highlighted lines contain references to data which is
present in an instance of the NewUserActivity class, this means that to access this data, the callback
would have to have access to an instance of the NewUserActivity class. The way it does this is by
capturing the instance it was created in, This is fine in the original version of the application, since the
callback is not serialised at any point, but in order to pass it between processes, the callback will need
to be serialised, and since this capture is required for the callback to execute properly, it must be
included in this serialisation, and the NewUserActivity class is not marked as serialisable, and its
instances contain data which is not serialisable. This results in the serialisation errors I saw in
implementing this fix.

Using a class called SharedData which stored common data in static fields which can be accessed
throughout the program was my first thought to solve this problem, however upon researching this I
discovered that it was not possible to share static fields between processes, since each process has a
separate memory space. This is not something that is specific to Java, all processes share this
behaviour, but in other languages like C/C++ which allow more control over the use of memory it is
possible to share memory between processes, however this is not possible in Java, or at least not
practical.

So to conclude, this is not a problem I can solve while retaining the majority of my existing solution, I
would most likely have to completely rethink my approach, which is something I don’t have time to
implement at this late stage in the project.

End-user testing
Due to the fact that the application does not function properly on devices with Android 13, and my
existing testing group consists of users whose device’s are running Android 13, it is not really possible
to conduct full scale end user testing as discussed in the design phase of the application. However we

234

can show the product to the stakeholder on an Android 12 virtual machine to get their feedback on the
product as it is, and this can then be used in future development to re-develop this application for
Android 13.

Following is the general user stakeholder’s response to a testing questionnaire:

What was your experience of the actual messaging system? I.e. did you find it easy to use, was it
simple to look at, was there too much information displayed, not enough information displayed?

I thought the actual messaging interface was simple to look at and use, although I feel like there were
some elements that could be improved, such as the send button disappearing when you send a
message. I would also appreciate having timestamps displayed next to the actual messages so that you
can see when someone sent them. Another thing which could be useful is changing the colours that
user’s messages are displayed as, while the current colours are fine, it might provide a better user
experience, and it would be clearer whose messages are whose.

What was your experience of the contact management system? (the ability to see your friend’s list,
send friend and chat invites, and manage invitations you have received from others).

I found the contact management system easy enough to use, and it functioned well. Although I did
notice that when a chat invitation is accepted I had to restart the application before I got notifications
for messages in that chat. I also would appreciate the ability to remove people as friends, rather than it
just being permanent after you have accepted the friend request.

How did you find the performance of the application, was it fast, slow, did it crash a lot?

I didn’t really notice any crashes, but the process of sending messages could be fairly slow at times.
The rest of the application’s performance was okay, just the sending of messages that was slower than
I expected it to be.

How easy was the application to use, were there any areas where you felt that usability could be
improved?

The application was simple as I requested, and I was able to use it pretty easily, but there might be
some people who don’t find it as easy to use so perhaps some kind of tutorial would help this.

How secure do you feel your data is when using this application? Do you think the application should
be more transparent about how it stores your data and why it requires that data?

I’m not really aware of the technical measures taken to secure my data, but the way you described
them to me makes me feel happy that my data is secure, although I think it might be a good idea to put
that into the application as well, because I didn’t see anywhere that said that my data was being stored
securely or offered any kind of transparency as to how this was done.

Do you feel that there were any missing features that you expected to be in an application like this?

I know I said that the application should be as simple as possible, without any of the extra features
that other messaging applications have, I do feel like the lack of profile pictures leaves something to

235

be desired. I also mentioned this earlier but timestamps on messages would also be a good addition,
and potentially different colours for different user’s messages, not just different colours for you and
other people.

Any other comments?

I felt that the GUI was slightly underwhelming, it wasn’t bad per say, but I just thought it could be
nicer to look at. Nonetheless I do feel like my criteria for a simple messaging application were met,
albeit with some potential improvements.

Here is the Programmer’s response to a testing questionnaire designed for them:

How secure do you feel your data is given the measures that were taken to secure it?

The measures that were taken are, in my opinion, sufficient for me to feel safe enough to use the
application regularly, although there are some potential improvements that could be made, such as
using a Quantum safe encryption algorithm, rather than RSA, and implementing salting when hashing
passwords. Perhaps even client specific hashing?

Following a review of the code, does its level of maintainability meet your standards?

Yes, the code includes a lot of comments which explain the process, and is designed in a modular and
layered manner, which meets my original expectations. Although if the code base is to be replicated
on other platforms, it might be a good idea to create some formal documentation of the server
program so that other programmers know how to use it and create their own clients without having to
analyse the code themselves.

What are your thoughts on the design of the overall application?

The design is effective for Android and other Java based applications, although it might be difficult to
write clients for programs that are not written in Java, or at the very least a language capable of
understanding and working with Java objects. Java is a cross platform language so this might not be a
huge problem, with the exception of development on iOS devices, which might require the
development of a kind of wrapper which ports Java objects to Swift or Objective-C objects.

Final evaluation

Evaluation of success criteria

● The application should allow users to communicate text based messages through the internet.

I believe the evidence shows that this criteria has been met. Development testing showed that the
application was able to send and receive messages successfully and without issues during the
encryption and decryption process.

236

The stakeholder mentioned that the performance of this part of the application left something to be
desired, this is a fair criticism, I’m not sure at this point in time how I would go about fixing this
problem, although I would start by attempting to optimise the existing code as much as I could,
perhaps there are some unnecessary network requests in there which could be removed or done more
efficiently, which would improve performance. I think generally network requests are a sort of
bottleneck for performance in this application, I’m not sure there's a lot I could do about that beyond
optimising the encryption process and minimising the amount of data transferred by the client and
server.

Nonetheless I do believe this criteria is met by my product.

● Minimal data is stored on the client device

Again I believe that this criteria is met, I looked at the data that the application would require to be on
the local storage to function properly and included only that data in the local storage, that being user
data for authentication, chats that the user is a member of, and the private keys of the chats the user is
a member of. I don’t think I could reduce the amount of data stored any further, although I might be
able to improve performance in some areas by including more data, perhaps a sort of cache for
network requests, or more information about a chat, like links between users and their user IDs, which
is something that the application has to request from the server every time it opens a chat, regardless
of whether or not it has been opened before.

The application and its related data takes up roughly 13.25 MB on my device, which I used for
development testing. This is below the target size of 14.6 MB so this criteria is most definitely met.
Although the amount of data stored by the application will of course increase over time, it is unlikely
it will increase significantly, as it stands the data section of the application takes up 28.67 kB on my
device.

● End-to-end encryption between clients and the server, and between clients

This criteria is clearly a success, the stakeholder said that they felt their data was secure (although
they were not aware of the technical parts of the implementation), and I am satisfied with the level of
security I implemented in transferring data between the client and the server. Messages sent into chats
are also encrypted separately using a key pair specific to that chat.

The only security feature I would aim to improve in the future is the use of salting in password
hashing. This would be a relatively simple implementation, and one that would improve the security
of the application. As the programmer stakeholder mentioned this might also be made client specific,
although this does potentially involve some concessions in terms of portability.

● Scalable server design

I believe that the Server design I have created is scalable to a reasonable degree. Although I am not
able to conduct full scale end user testing to completely test this claim, I can test how the server
handles a large number of handlers on idle, all waiting for connections. The application managed to
get through the setup phase with 10, 100, 1000, and 10000 handlers, although I made to decision to
stop before it finished setting up with 100000 handlers, since the time it was taking to start the
handlers had jumped significantly, and my systems memory usage was slowly building past 90%.

237

With a more powerful system with more memory, and potentially a number of server systems, this
could prove to be a scalable design, although I would have to test how the system holds up when these
handlers are actually tasked with something.

● Scalable client application

Again I should clarify what I mean by this. I am not necessarily implying that the client application
needs to perform well under high traffic, because it doesn’t, at least not on the scale of the server. I
mean that the application should facilitate future developments. I think that the fact that I was unable
to implement a fix for the Android 13 issue doesn’t support this, although I do feel that the code I
have written is maintainable for Android 12 at the very least, in order to fix the Android 13 issue I
would have to rethink a lot of my approach, which is not necessarily a comment on the maintainability
of the code but on my approach to the problem.

Code review
I attempted to follow a modular design approach throughout development, and ensured that all of my
code was commented sufficiently to illustrate its function. Furthermore, I attempted to follow a
similar code style throughout, regarding naming conventions and structure of code.

I believe that I was successful in my efforts, this is the largest project I have undertaken and I believe
that some of my best code has gone into creating this system. Looking back at the code there are
certainly some places I would like to improve, but these are all things that I can address in later
development. For example, throughout the client application I received warnings from the compiler
about adding items to JSONObjects, I chose not to investigate it further since it didn’t appear to affect
functionality, but perhaps in future development I should attempt to investigate and address these
warnings.

The Android 13 issues also provide a good opportunity to make a lot of these changes, since it would
involve re-writing a lot of the application anyway.

I think one of the most significant issues in this application is the fact that I have made it very Java
specific. While in some ways this is good, since Java is generally a cross platform language, it does
limit me to some degree. Maybe future development should include a new request / response model
for the server and client, i.e. rather than sending Java objects they should send data in a more general
format. There is also the option of developing a kind of wrapper, as mentioned by the programmer
stakeholder. This is a good idea and would not require any significant changes to the server, but may
become tedious as the application is expanded into other languages.

Usability
The stakeholder stated in the questionnaire that they found the application to be simple, as they
requested, but that other users who are not as technologically proficient might find it difficult to use.
This is a fair criticism, there are some parts of the application which I can see could be difficult to
understand for such people. A potential solution for this could be to include a tutorial on how to use
the application, maybe we don’t force users to go through it, but we give them the option to, and
highlight where it is if they ever want to use it.

Furthermore, something that was not highlighted during testing was how people with disabilities such
as visual impairments might use the application. Android does provide features within the SDK that

238

allow you to set the values read out by the audio descriptor built into the operating system, and while I
did fill these out I did not put a large amount of effort into them. As the application grows this might
become more of a problem so perhaps in the future I should work on this and perhaps attempt testing
with someone that has such a disability.

While this next point does not necessarily fall under usability, it is related to the user experience so
this might be the most appropriate category. The stakeholder mentioned that they would want to know
more details about how their data is secured. Perhaps we should detail this in the privacy policy, and
mention in the application that all chats are secured end-to-end, such as in Whatsapp, a message is
displayed at the top of a chat saying that all messages are end-to-end encrypted. I could implement a
similar message in this application.

Perhaps also there is the option of adding a default chat for every user which is controlled by a chatbot
prepared to answer frequently asked questions, like a live FAQ. This is a feature similar to the Team
Snapchat chat in Snapchat, which is used for distributing information about the application, and for
holiday well wishes and such.

Limitations
Following is a list of limitations of the final product, as revealed by testing, or ones I suspect from
analysing my code.

● Limited functionality on Android 13 (and potentially newer versions, the newest being
Android 14 at the time of writing).

○ The application functions as expected on Android 12, and while the application is
open on Android 13, but the NetworkerService fails to fulfil its full functionality
when the application is closed.

○ This is because the NetworkerService and UI thread run in the same process.
○ While this was acceptable in Android 12, it is no longer acceptable as of Android 13.

● Limited portability to other platforms.
○ The server receives and responds with Java objects, other platforms might not be able

to use Java and as such implementing a client application on them would be more
difficult compared to a pure Java implementation of a client, such as this Android
application.

● Limited performance
○ This is most likely due to my implementation of RSA asymmetric encryption,

perhaps I should look into more efficient ways to implement this part of the system.
○ This may also be down to the time lag in making a network request, although there

isn’t really anything I can do to improve that significantly.
● Lacking features in the contact management system

○ The stakeholder mentioned that they thought the application was missing the ability
to remove someone as a friend once they had already been added, or the ability to
leave a chat once a member of it. This is something that could be addressed in future
development.

These limitations will be addressed in future development where possible, although some of them
don’t necessarily have a definitive fix, for example the limited performance can only really be
improved by performing profiling testing on the application to see which parts of the system are
taking the longest to execute and look into ways to optimise those processes in particular.

239

Future development plan
This section will cover things I was unable to implement here, but may still be useful to this project,
and should be designated for future development.

1. Android 13 fix
a. Split NetworkerService and UI thread processes
b. Implement a new method of communication between these processes (using Android

SDK’sMessengers and Handlers.
c. Implement a new callback structure, which does not involve serialisation.

2. Create a new GUI design, potentially using Android’s Material API rather than the View API.
This would involve a Kotlin implementation but has significant benefits over the View API.

3. New response / request model for the client and server, using a more general format as
opposed to straight Java objects.

4. The ability to remove friends / leave chats.
5. Profile pictures
6. Moderation system

a. This may be quite complex to implement as it would be necessary to decrypt the
contents of the messages, perhaps some kind of reporting system which reports the
decrypted content of messages from the client side would be a good approach here.

7. Multimedia messages
8. VoIP calling (such as that seen in Whatsapp)

Each of these developments does something to improve the application, whether that be improving the
general user experience or the function of the application, or perhaps the portability and ability to
develop into other platforms. Regardless, they are all features which I was unable to implement here
which are generally key parts of existing messaging systems. The stakeholder mentioned that the lack
of profile pictures was disappointing, I also think that if I were to publicly release this application that
people would be disappointed by the lack of other features such as a moderation system and
multimedia messages, so you will find such features on the list for future development.

Summary
In summary, I believe that this initial stage of development has been a success. The stakeholder feels
that I have met their requirements, with some justifiable criticism which can be addressed relatively
easily with future development. The application functions as expected on Android 12, and while it
may not function completely on Android 13 and newer versions of Android, we cannot deny that the
system itself does work well, the server functions well and appears to be scalable, and the encryption
process and security of data appears to be well implemented. The current version of the client
application could be seen as a precursor to future versions, the development plan for which has been
laid out in the previous section.

There is a clear path forward in future development, and I feel optimistic that I can fix the existing
problems in the application. I am satisfied with the product I have produced here and the stakeholder
appears to be as well. While I may not have been able to create an application that I could release
publicly, I am confident that in the future I will be able to develop this into an application worthy of
public use.

240

